The Akaike information criterion in weighted regression of immittance data

被引:23
|
作者
Ingdal, Mats [1 ]
Johnsen, Roy [1 ]
Harrington, David A. [2 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Mech & Ind Engn, N-7491 Trondheim, Norway
[2] Univ Victoria, Dept Chem, Victoria, BC V8W 2Y2, Canada
关键词
Akaike information criterion; Weighted regression; Error structure; Impedance; Maximum likelihood; ELECTROCHEMICAL IMPEDANCE; MODELS; SPECTROSCOPY; MEMBRANE;
D O I
10.1016/j.electacta.2019.06.030
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The Akaike Information Criterion (AIC) is a powerful way to distinguish between models. It considers both the goodness-of-fit and the number of parameters in the model, but has been little used for immittance data. Application in the case of weighted complex nonlinear least squares regression, as typically used in fitting impedance or admittance data, is considered here. AIC can be used to compare different weighting schemes as well as different models. These ideas are tested for simulated and real transadmittance data for hydrogen diffusion through an iron foil in a Devanathan-Stachurski cell. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:648 / 653
页数:6
相关论文
共 50 条
  • [31] Akaike's information criterion for a measure of linkage disequilibrium
    K. Shimo-onoda
    T. Tanaka
    K. Furushima
    T. Nakajima
    S. Toh
    S. Harata
    K. Yone
    S. Komiya
    H. Adachi
    E. Nakamura
    H. Fujimiya
    I. Inoue
    [J]. Journal of Human Genetics, 2002, 47 : 649 - 655
  • [33] The Akaike Information Criterion Will Not Choose the No Common Mechanism Model
    Holder, Mark T.
    Lewis, Paul O.
    Swofford, David L.
    [J]. SYSTEMATIC BIOLOGY, 2010, 59 (04) : 477 - 485
  • [34] AKAIKE INFORMATION CRITERION IN THE EDGE ANALYSIS OF THE SCREEN ELEMENT
    Maretic, Katja Petric
    Milkovic, Marin
    Modric, Damir
    [J]. TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2013, 20 (03): : 441 - 447
  • [35] Finite Sample Improvement of Akaike's Information Criterion
    Saumard, Adrien
    Navarro, Fabien
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) : 6328 - 6343
  • [36] Performance of Akaike Information Criterion and Bayesian Information Criterion in Selecting Partition Models and Mixture Models
    Liu, Qin
    Charleston, Michael A.
    Richards, Shane A.
    Holland, Barbara R.
    [J]. SYSTEMATIC BIOLOGY, 2023, 72 (01) : 92 - 105
  • [37] A note on sample size determination for Akaike Information Criterion (AIC) approach to clinical data analysis
    Yafune, A
    Narukawa, M
    Ishiguro, M
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (12) : 2331 - 2343
  • [38] Estimation of time -varying linear regression with unknown time -volatility via continuous generalization of the Akaike Information Criterion
    Moscow Institute of Physics and Technology, Department of Intelligent Systems, Moscow, Russia
    不详
    不详
    [J]. World Acad. Sci. Eng. Technol., 2009, (151-156):
  • [39] A general Akaike-type criterion for model selection in robust regression
    Burman, P
    Nolan, D
    [J]. BIOMETRIKA, 1995, 82 (04) : 877 - 886
  • [40] A data-driven method for predicting debris-flow runout zones by integrating multivariate adaptive regression splines and Akaike information criterion
    Mi Tian
    Lihua Li
    Zimin Xiong
    [J]. Bulletin of Engineering Geology and the Environment, 2022, 81