Gate-Tunable Spin-Orbit Coupling in a Germanium Hole Double Quantum Dot

被引:17
|
作者
Liu, He [1 ,2 ]
Zhang, Ting [1 ,2 ]
Wang, Ke [1 ,2 ]
Gao, Fei [3 ,4 ]
Xu, Gang [1 ,2 ]
Zhang, Xin [1 ,2 ]
Li, Shu-Xiao [1 ,2 ]
Cao, Gang [1 ,2 ]
Wang, Ting [3 ,4 ]
Zhang, Jianjun [3 ,4 ]
Hu, Xuedong [5 ]
Li, Hai-Ou [1 ,2 ]
Guo, Guo-Ping [1 ,2 ,6 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Hefei 230026, Anhui, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[5] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
[6] Origin Quantum Comp Co Ltd, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Decoherence - Double quantum dots - Germaniums (Ge) - Hole spin - Hyperfine interactions - Quantum dot systems - Spin manipulation - Spin-orbit couplings - Spin-orbit interaction - Tunables;
D O I
10.1103/PhysRevApplied.17.044052
中图分类号
O59 [应用物理学];
学科分类号
摘要
Hole spins confined in semiconductor quantum dot systems have gained considerable interest for their strong spin-orbit interactions (SOIs) and relatively weak hyperfine interactions. Here, we experimentally demonstrate a tunable SOI in a double quantum dot in a germanium (Ge) hut wire (HW), which could help to enable fast all-electric spin manipulations while suppressing unwanted decoherence. Specifically, we measure the transport spectra in the Pauli-spin-blockade regime in the double-quantum-dot device. By adjusting the interdot tunnel coupling, we obtain an electric-field-tuned spin-orbit length of lSO= 2.0???48.9 nm. This tunability of the SOI could pave the way toward the realization of high-fidelity qubits in Ge HW systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Gate-tunable strong spin-orbit interaction in two-dimensional tellurium probed by weak antilocalization
    Niu, Chang
    Qiu, Gang
    Wang, Yixiu
    Zhang, Zhuocheng
    Si, Mengwei
    Wu, Wenzhuo
    Ye, Peide D.
    [J]. PHYSICAL REVIEW B, 2020, 101 (20)
  • [42] Persistent spin current in a quantum-dot ring with Rashba spin-orbit coupling
    Yi, Guangyu
    Han, Yu
    Gong, Weijiang
    Wu, Haina
    Wei, Guozhu
    [J]. PHYSICS LETTERS A, 2009, 373 (18-19) : 1672 - 1678
  • [43] Spin-relaxation anisotropy in a nanowire quantum dot with strong spin-orbit coupling
    Liu, Zhi-Hai
    Li, Rui
    [J]. AIP ADVANCES, 2018, 8 (07):
  • [44] Twist- and gate-tunable proximity spin-orbit coupling, spin relaxation anisotropy, and charge-to-spin conversion in heterostructures of graphene and transition metal dichalcogenides
    Zollner, Klaus
    Joao, Simao M.
    Nikolic, Branislav K.
    Fabian, Jaroslav
    [J]. PHYSICAL REVIEW B, 2023, 108 (23)
  • [45] Gate-tunable Ruderman-Kittel-Kasuya-Yosida interaction mediated by low-dimensional electrons with Rashba spin-orbit coupling
    Lyu, Pin
    Liu, Ning-Ning
    Zhang, Chao
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (10)
  • [46] Spin polarization in a double bend quantum wire with Rashba spin-orbit coupling
    Li, Hang
    Chen, Yuan Ping
    Xie, Yue E.
    Zhong, Jian Xin
    [J]. PHYSICA B-CONDENSED MATTER, 2010, 405 (17) : 3581 - 3584
  • [47] Spin-orbit coupling in quantum gases
    Galitski, Victor
    Spielman, Ian B.
    [J]. NATURE, 2013, 494 (7435) : 49 - 54
  • [48] Spin polarization in a double-quantum dot interferometer with Rashba spin-orbit interaction
    Liu, Xiao-Jie
    Zhao, Xue-Yang
    Wang, Xiao-Fei
    Xue, Hui-Jie
    Feng, Li-Feng
    Zhang, Di
    Li, Hua
    [J]. PHYSICA SCRIPTA, 2012, 85 (05)
  • [49] Single-hole physics in GaAs/AlGaAs double quantum dot system with strong spin-orbit interaction
    Studenikin, Sergei
    Korkusinski, Marek
    Bogan, Alex
    Gaudreau, Louis
    Austing, D. Guy
    Sachrajda, Andrew S.
    Tracy, Lisa
    Reno, John
    Hargett, Terry
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (05)
  • [50] Hole spin in tunable Ge hut wire double quantum dot
    Xu, Gang
    Gao, Fei
    Wang, Ke
    Zhang, Ting
    Liu, He
    Cao, Gang
    Wang, Ting
    Zhang, Jian-Jun
    Jiang, Hong-Wen
    Li, Hai-Ou
    Guo, Guo-Ping
    [J]. APPLIED PHYSICS EXPRESS, 2020, 13 (06)