MINIMAL SURFACES IN FINITE VOLUME NONCOMPACT HYPERBOLIC 3-MANIFOLDS

被引:16
|
作者
Collin, Pascal [1 ]
Hauswirth, Laurent [2 ]
Mazet, Laurent [3 ]
Rosenberg, Harold [4 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[2] Univ Paris Est, CNRS, LAMA UMR 8050, UPEC,UPEM, F-77454 Marne La Vallee, France
[3] Univ Paris Est, CNRS, LAMA UMR 8050, UPEC,UPEM, 61 Ave Gen Gaulle, F-94010 Creteil, France
[4] Inst Nacl Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
EXISTENCE;
D O I
10.1090/tran/6859
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove there exists a compact embedded minimal surface in a complete finite volume hyperbolic 3-manifold N. We also obtain a least area, incompressible, properly embedded, finite topology, 2-sided surface. We prove a properly embedded minimal surface of bounded curvature has finite topology. This determines its asymptotic behavior. Some rigidity theorems are obtained.
引用
收藏
页码:4293 / 4309
页数:17
相关论文
共 50 条