MINIMAL SURFACES IN FINITE VOLUME NONCOMPACT HYPERBOLIC 3-MANIFOLDS

被引:16
|
作者
Collin, Pascal [1 ]
Hauswirth, Laurent [2 ]
Mazet, Laurent [3 ]
Rosenberg, Harold [4 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[2] Univ Paris Est, CNRS, LAMA UMR 8050, UPEC,UPEM, F-77454 Marne La Vallee, France
[3] Univ Paris Est, CNRS, LAMA UMR 8050, UPEC,UPEM, 61 Ave Gen Gaulle, F-94010 Creteil, France
[4] Inst Nacl Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
EXISTENCE;
D O I
10.1090/tran/6859
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove there exists a compact embedded minimal surface in a complete finite volume hyperbolic 3-manifold N. We also obtain a least area, incompressible, properly embedded, finite topology, 2-sided surface. We prove a properly embedded minimal surface of bounded curvature has finite topology. This determines its asymptotic behavior. Some rigidity theorems are obtained.
引用
收藏
页码:4293 / 4309
页数:17
相关论文
共 50 条
  • [1] MINIMAL SURFACES IN FINITE VOLUME NONCOMPACT HYPERBOLIC 3-MANIFOLDS (vol 209, pg 617, 2017)
    Collin, Pascal
    Hauswirth, Laurent
    Mazet, Laurent
    Rosenberg, Harold
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7521 - 7524
  • [2] Minimal Surfaces in Hyperbolic 3-Manifolds
    Coskunuzer, Baris
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (01) : 114 - 139
  • [3] SURFACES IN NONCOMPACT 3-MANIFOLDS
    TUCKER, TW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A229 - A229
  • [4] On the construction of minimal foliations by hyperbolic surfaces on 3-manifolds
    Alcalde Cuesta, Fernando
    Dal'Bo, Francoise
    Martinez, Matilde
    Verjovsky, Alberto
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 4127 - 4144
  • [5] On the construction of minimal foliations by hyperbolic surfaces on 3-manifolds
    Fernando Alcalde Cuesta
    Françoise Dal’Bo
    Matilde Martínez
    Alberto Verjovsky
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 4127 - 4144
  • [6] MINIMAL AREA SURFACES AND FIBERED HYPERBOLIC 3-MANIFOLDS
    Farre, James
    Pallete, Franco Vargas
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (11) : 4931 - 4946
  • [7] CLOSED MINIMAL-SURFACES IN HYPERBOLIC 3-MANIFOLDS
    UHLENBECK, KK
    [J]. ANNALS OF MATHEMATICS STUDIES, 1983, (103): : 147 - 168
  • [8] Noncompact Fuchsian and quasi-Fuchsian surfaces in hyperbolic 3-manifolds
    Adams, Colin
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 565 - 582
  • [9] MINIMAL SURFACES IN FINITE VOLUME HYPERBOLIC 3-MANIFOLDS N AND IN M x S1, M A FINITE AREA HYPERBOLIC SURFACE
    Collin, P.
    Hauswirth, L.
    Rosenberg, H.
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (04) : 1075 - 1112
  • [10] Minimal surfaces near short geodesics in hyperbolic 3-manifolds
    Mazet, Laurent
    Rosenberg, Harold
    [J]. ADVANCES IN MATHEMATICS, 2020, 372