LEAST ENERGY SOLUTIONS FOR FRACTIONAL KIRCHHOFF TYPE EQUATIONS INVOLVING CRITICAL GROWTH

被引:2
|
作者
Deng, Yinbin [1 ,2 ]
Huang, Wentao [3 ]
机构
[1] Guangxi Univ, Sch Math & Informat, Nanning 530004, Peoples R China
[2] Cent China Normal Univ, Dept Math, Wuhan 430079, Hubei, Peoples R China
[3] East China JiaoTong Univ, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
来源
关键词
Fractional Kirchhoff equation; Nehari-Pohozaev manifold; least energy solutions; critical growth; GROUND-STATE SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE; REGULARITY; BEHAVIOR;
D O I
10.3934/dcdss.2019126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following fractional Kirchhoff type equation: {(a + b integral(R3)vertical bar(-Delta)(s/2)u vertical bar(2)dx) (-Delta)(s)u + V(x)u = f(u) + vertical bar u vertical bar(2s)*(-2)u, x is an element of R-3, u is an element of H-s (R-3), where a, b > 0 are constants, 2(s)* = 6/3-2s with s is an element of (0, 1) is the critical Sobolev exponent in R-3, V is a potential function on R-3. Under some more general assumptions on f and V, we prove that the given problem admits a least energy solution by using a constrained minimization on Nehari-Pohozaev manifold and monotone method.
引用
收藏
页码:1929 / 1954
页数:26
相关论文
共 50 条