Perturbation analysis for QR factorization of unitary-symmetric matrix

被引:0
|
作者
Zou Hongxing [1 ]
Wang Dianjun
Dai Qionghai
Li Yanda
机构
[1] Tsing Hua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsing Hua Univ, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
[4] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
QR factorization; unitary-symmetric matrix; perturbation analysis;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the problem of perturbation analysis for the QR factorization of a special architecture called unitary-symmetric matrix. The perturbation bounds of the triangular factor and orthogonal factor in the QR factorization of unitary-symmetric matrix are derived, together with the perturbation bound correspondences between the unitary-symmetric matrix and its mother matrix highlighted.
引用
收藏
页码:455 / 459
页数:5
相关论文
共 50 条
  • [31] A QR-Type Factorization of Central Extended Matrix
    Liu, Zhibing
    Xu, Chengfeng
    Wang, Kanmin
    [J]. 2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 1528 - 1529
  • [32] New rigorous perturbation bounds for the Cholesky-like factorization of skew-symmetric matrix
    Li, Hanyu
    Wei, Yimin
    Yang, Yanfei
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 491 : 83 - 100
  • [33] Sensitivity analysis for the symplectic QR factorization
    Li, Wen
    Xie, Ze-Jia
    Vong, Seak-Weng
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2016, 353 (05): : 1186 - 1205
  • [34] Unitary similarity of a weighted shift matrix to a symmetric matrix
    Chien, Mao-Ting
    Nakazato, Hiroshi
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 611 : 356 - 364
  • [35] PERTURBATION ANALYSIS FOR COMPLEX SYMMETRIC, SKEW SYMMETRIC, EVEN AND ODD MATRIX POLYNOMIALS
    Ahmad, Sk Safique
    Mehrmann, Volker
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2011, 38 : 275 - 302
  • [36] NOTE ON LU FACTORIZATION OF A SYMMETRIC MATRIX
    EVANS, DJ
    HATZOPOULOS, M
    [J]. COMMUNICATIONS OF THE ACM, 1975, 18 (05) : 278 - 279
  • [37] The decimation scheme for symmetric matrix factorization
    Camilli, Francesco
    Mezard, Marc
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (08)
  • [38] A factorization of the symmetric Pascal matrix involving the Fibonacci matrix
    Zhang, Zhizheng
    Wang, Xin
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2371 - 2376
  • [40] ACCURATE MATRIX FACTORIZATION: INVERSE LU AND INVERSE QR FACTORIZATIONS
    Ogita, Takeshi
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (05) : 2477 - 2497