A New Scalar Multiplication Method Suitable For Hyperelliptic Curve Cryptosystems

被引:0
|
作者
Chen Xiao-e [1 ]
You Lin [2 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou 310018, Zhejiang, Peoples R China
来源
11TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, VOLS I-III, PROCEEDINGS,: UBIQUITOUS ICT CONVERGENCE MAKES LIFE BETTER! | 2009年
关键词
HECC; Scalar multiplication; Simple divisor;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe a new scalar multiplication method for hyperelliptic curve cryptosystems. The method is obtained by the decomposition of the divisor into the simple divisors. The comparison results show that our method is much more efficient than Frobenius method and Double-and-Add method for some special hyperelliptic curves.
引用
收藏
页码:1652 / 1656
页数:5
相关论文
共 50 条
  • [21] Efficient hyperelliptic curve cryptosystems using theta divisors
    Katagi, M
    Akishita, T
    Kitamura, I
    Takagi, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (01) : 151 - 160
  • [22] Compact representation of domain parameters of hyperelliptic curve cryptosystems
    Zhang, FG
    Liu, SL
    Kim, K
    INFORMATION SECURITY AND PRIVACY, 2002, 2384 : 203 - 213
  • [23] Efficient scalar multiplication in hyperelliptic curves using a new Frobenius expansion
    Park, TJ
    Lee, MK
    Park, K
    INFORMATION SECURITY AND CRYPTOLOGY - ICISC 2003, 2004, 2971 : 152 - 165
  • [24] COMPARISON OF SCALAR MULTIPLICATION ON REAL HYPERELLIPTIC CURVES
    Jacobson, Michael J., Jr.
    Rad, Monireh Rezai
    Scheidler, Renate
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (04) : 389 - 406
  • [25] Hyperelliptic curve cryptosystems: Closing the performance gap to elliptic curves
    Pelzl, J
    Wollinger, T
    Guajardo, J
    Paar, C
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS CHES 2003, PROCEEDINGS, 2003, 2779 : 351 - 365
  • [26] Towards minimizing memory requirement for implementation of hyperelliptic curve cryptosystems
    Mishra, Pradeep Kumar
    Pal, Pinakpani
    Sarkar, Palash
    INFORMATION SECURITY PRACTICE AND EXPERIENCE, PROCEEDINGS, 2007, 4464 : 269 - +
  • [27] On efficient implementation of FPGA-based hyperelliptic curve cryptosystems
    Elias, Grace
    Miri, Ali
    Yeap, Tet-Hin
    COMPUTERS & ELECTRICAL ENGINEERING, 2007, 33 (5-6) : 349 - 366
  • [28] A hyperelliptic curve with real multiplication of degree two
    Cohn, H
    NUMBER THEORY, 2004, : 105 - 131
  • [29] Countermeasures against differential power analysis for hyperelliptic curve cryptosystems
    Avanzi, RM
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS CHES 2003, PROCEEDINGS, 2003, 2779 : 366 - 381
  • [30] Efficiently computable endomorphism for genus 3 hyperelliptic curve cryptosystems
    Feng, Jun
    Wang, Xueming
    Sun, Hong
    INFORMATION PROCESSING LETTERS, 2013, 113 (12) : 405 - 408