Semi-Supervised Sparse Coding

被引:0
|
作者
Wang, Jim Jing-Yan [1 ,2 ]
Gao, Xin [3 ]
机构
[1] SUNY Buffalo, Buffalo, NY 14203 USA
[2] Soochow Univ, Prov Key Lab Comp Informat Proc Technol, Suzhou 215006, Peoples R China
[3] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
关键词
SIGNATURE MOLECULAR DESCRIPTOR; RECOGNITION; IDENTIFICATION; ROBUST;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets.
引用
收藏
页码:1630 / 1637
页数:8
相关论文
共 50 条
  • [11] A SPARSE CODING METHOD FOR SEMI-SUPERVISED SEGMENTATION WITH MULTI-CLASS HISTOGRAM CONSTRAINTS
    Karnyaczki, Stefan
    Desrosiers, Christian
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3215 - 3219
  • [12] Semi-supervised learning via sparse model
    Wang, Yu
    Tang, Sheng
    Zheng, Yan-Tao
    Zhang, Yong-Dong
    Li, Jin-Tao
    [J]. NEUROCOMPUTING, 2014, 131 : 124 - 131
  • [13] Semi-supervised learning via sparse model
    Wang, Yu
    Tang, Sheng
    Zheng, Yan-Tao
    Zhang, Yong-Dong
    Li, Jin-Tao
    [J]. Neurocomputing, 2014, 131 : 124 - 131
  • [14] Distributed Semi-Supervised Sparse Statistical Inference
    Tu, Jiyuan
    Liu, Weidong
    Mao, Xiaojun
    Xu, Mingyue
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (06) : 4197 - 4217
  • [15] Statistical mechanics of semi-supervised clustering in sparse graphs
    Steeg, Greg Ver
    Galstyan, Aram
    Allahverdyan, Armen E.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [16] Semi-supervised classification based on subspace sparse representation
    Guoxian Yu
    Guoji Zhang
    Zili Zhang
    Zhiwen Yu
    Lin Deng
    [J]. Knowledge and Information Systems, 2015, 43 : 81 - 101
  • [17] Semi-supervised classification based on subspace sparse representation
    Yu, Guoxian
    Zhang, Guoji
    Zhang, Zili
    Yu, Zhiwen
    Deng, Lin
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 43 (01) : 81 - 101
  • [18] Sparse semi-supervised heterogeneous interbattery bayesian analysis
    Sevilla-Salcedo, Carlos
    Gomez-Verdejo, Vanessa
    Olmos, Pablo M.
    [J]. PATTERN RECOGNITION, 2021, 120
  • [19] Nonnegative Sparse and KNN graph for semi-supervised learning
    Zhang, Yunbin
    Zhang, Chunmei
    Zhou, Qianqi
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS (AMEII 2016), 2016, 73 : 1178 - 1182
  • [20] A sparse large margin semi-supervised learning method
    Choi, Hosik
    Kim, Jinseog
    Kim, Yongdai
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2010, 39 (04) : 479 - 487