Contact resistance in carbon nanostructure via interconnects

被引:33
|
作者
Wu, Wen [1 ]
Krishnan, Shoba [1 ]
Yamada, Toshishige [1 ]
Sun, Xuhui [1 ]
Wilhite, Patrick [1 ]
Wu, Raymond [1 ]
Li, Ke [1 ]
Yang, Cary Y. [1 ]
机构
[1] Santa Clara Univ, Ctr Nanostruct, Santa Clara, CA 95053 USA
关键词
atomic force microscopy; carbon fibres; contact resistance; electrical resistivity; interconnections; metal-insulator boundaries; metallic thin films; nanofibres; silicon compounds; titanium; NANOTUBES; TRANSPORT;
D O I
10.1063/1.3123164
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present an in-depth electrical characterization of contact resistance in carbon nanostructure via interconnects. Test structures designed and fabricated for via applications contain vertically aligned arrays of carbon nanofibers (CNFs) grown on a thin titanium film on silicon substrate and embedded in silicon dioxide. Current-voltage measurements are performed on single CNFs using atomic force microscope current-sensing technique. By analyzing the dependence of measured resistance on CNF diameter, we extract the CNF resistivity and the metal-CNF contact resistance.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Extraction of contact resistance in carbon nanofiber via interconnects with varying lengths
    Li, Ke
    Wu, Raymond
    Wilhite, Patrick
    Khera, Vinit
    Krishnan, Shoba
    Sun, Xuhui
    Yang, Cary Y.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (25)
  • [2] Contact resistances of carbon nanotube via interconnects
    Sun, Xuhui
    Li, Ke
    Wu, Wen
    Wilhite, Patrick
    Saito, Tsutomu
    Yang, Cary Y.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC 2009), 2009, : 131 - +
  • [3] Contact resistance of low-temperature carbon nanotube vertical interconnects
    Vollebregt, Sten
    Chiaramonti, Ann N.
    Ishihara, Ryoichi
    Schellevis, Hugo
    Beenakker, Kees
    [J]. 2012 12TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2012,
  • [4] Statistical Latency Analysis of Carbon Nanotube Interconnects due to Contact Resistance Variations
    Kuruvilla, Nisha
    Raina, J. P.
    [J]. 2008 INTERNATIONAL CONFERENCE ON MICROELECTRONICS, 2008, : 296 - +
  • [5] Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability
    Lim, Seong Chu
    Jang, Jin Ho
    Bae, Dong Jae
    Han, Gang Hee
    Lee, Sunwoo
    Yeo, In-Seok
    Lee, Young Hee
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (26)
  • [6] Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects
    Chiodarelli, Nicolo'
    Masahito, Sugiura
    Kashiwagi, Yusaku
    Li, Yunlong
    Arstila, Kai
    Richard, Olivier
    Cott, Daire J.
    Heyns, Marc
    De Gendt, Stefan
    Groeseneken, Guido
    Vereecken, Philippe M.
    [J]. NANOTECHNOLOGY, 2011, 22 (08)
  • [7] Carbon nanotube based via interconnects: Performance estimation based on the resistance of individual carbon nanotubes
    Fiedler, Holger
    Toader, Marius
    Hermann, Sascha
    Rodriguez, Raul D.
    Sheremet, Evgeniya
    Rennau, Michael
    Schulze, Steffen
    Waechtler, Thomas
    Hietschold, Michael
    Zahn, Dietrich R. T.
    Schulz, Stefan E.
    Gessner, Thomas
    [J]. MICROELECTRONIC ENGINEERING, 2014, 120 : 210 - 215
  • [8] Distinguishing between Individual Contributions to the Via Resistance in Carbon Nanotubes Based Interconnects
    Fiedler, Holger
    Toader, Marius
    Hermann, Sascha
    Rodriguez, Raul D.
    Sheremet, Evgeniya
    Rennau, Michael
    Schulze, Steffen
    Waechtler, Thomas
    Hietschold, Michael
    Zahn, Dietrich R. T.
    Schulz, Stefan E.
    Gessner, Thomas
    [J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2012, 1 (06) : M47 - M51
  • [9] RESISTANCE OF CARBON TO CARBON CONTACT
    PIETENPOL, WB
    WALZ, FC
    [J]. PHYSICAL REVIEW, 1945, 67 (5-6): : 201 - 201
  • [10] Via Resistance Reduction in Advanced Copper Interconnects
    Yang, C. -C.
    Spooner, T.
    McLaughlin, P.
    Quon, R.
    Standaert, T.
    Edelstein, D.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2017, 38 (01) : 115 - 118