Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms

被引:55
|
作者
Friedrich, Tobias [1 ]
Neumann, Frank [2 ]
机构
[1] Hasso Plattner Inst, Potsdam, Germany
[2] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
Submodular functions; matroid constraints; approximation; multiobjective optimization; hypervolume indicator; maximum cut; runtime; theory; APPROXIMATION ALGORITHMS; MAXIMIZATION; HYPERVOLUME; SEARCH; CUT;
D O I
10.1162/EVCO_a_00159
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a simple single objective evolutionary algorithm called (1 + 1) EA and a multiobjective evolutionary algorithm called GSEMO until they have obtained a good approximation for submodular functions. For the case of monotone submodular functions and uniform cardinality constraints, we show that theGSEMOachieves a (1 - 1/e)-approximation in expected polynomial time. For the case of monotone functions where the constraints are given by the intersection of k >= 2 matroids, we show that the (1 + 1) EA achieves a (1/k + delta)- approximation in expected polynomial time for any constant delta > 0. Turning to nonmonotone symmetric submodular functions with k >= 1 matroid intersection constraints, we show that the GSEMO achieves a 1/((k + 2)(1 + epsilon))-approximation in expected time O(n(k+6) log(n)/epsilon).
引用
收藏
页码:543 / 558
页数:16
相关论文
共 50 条
  • [21] Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
    Fadaei, Salman
    Fazli, MohammadAmin
    Safari, MohammadAli
    [J]. OPERATIONS RESEARCH LETTERS, 2011, 39 (06) : 447 - 451
  • [22] Maximizing k-submodular functions under budget constraint: applications and streaming algorithms
    Pham, Canh, V
    Vu, Quang C.
    Ha, Dung K. T.
    Nguyen, Tai T.
    Le, Nguyen D.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 723 - 751
  • [23] Maximizing k-submodular functions under budget constraint: applications and streaming algorithms
    Canh V. Pham
    Quang C. Vu
    Dung K. T. Ha
    Tai T. Nguyen
    Nguyen D. Le
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 723 - 751
  • [24] Dynamic Algorithms for Matroid Submodular Maximization
    Banihashem, Kiarash
    Biabani, Leyla
    Goudarzi, Samira
    Hajiaghayi, Mohammad Taghi
    Jabbarzade, Peyman
    Monemizadeh, Morteza
    [J]. PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 3485 - 3533
  • [25] Maximizing Submodular Set Functions Subject to Multiple Linear Constraints
    Kulik, Ariel
    Shachnai, Hadas
    Tamir, Tami
    [J]. PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 545 - +
  • [26] Two-Stage Submodular Maximization Under Knapsack and Matroid Constraints
    Liu, Zhicheng
    Jin, Jing
    Du, Donglei
    Zhang, Xiaoyan
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022, 2022, 13571 : 140 - 154
  • [27] Differentially Private Monotone Submodular Maximization Under Matroid and Knapsack Constraints
    Sadeghi, Omid
    Fazel, Maryam
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [28] MAXIMIZING A MONOTONE SUBMODULAR FUNCTION SUBJECT TO A MATROID CONSTRAINT
    Calinescu, Gruia
    Chekuri, Chandra
    Pal, Martin
    Vondrak, Jan
    [J]. SIAM JOURNAL ON COMPUTING, 2011, 40 (06) : 1740 - 1766
  • [29] Non-monotone Submodular Maximization under Matroid and Knapsack Constraints
    Lee, Jon
    Mirrokni, Vahab S.
    Nagarajan, Viswanath
    Sviridenko, Maxim
    [J]. STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 323 - 332
  • [30] Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences
    Qian, Chao
    Liu, Dan-Xuan
    Feng, Chao
    Tang, Ke
    [J]. THEORETICAL COMPUTER SCIENCE, 2023, 943 : 241 - 266