Existence and uniqueness of two dimensional Euler-Poisson system and WKB approximation to the nonlinear Schrodinger-Poisson system

被引:1
|
作者
Masaki, Satoshi [1 ]
Ogawa, Takayoshi [2 ]
机构
[1] Hiroshima Univ, Inst Engn, Math Lab, Higashihiroshima 7398527, Japan
[2] Tohoku Univ, Math Inst, Sendai, Miyagi 8128581, Japan
关键词
INVISCID LIMIT; SEMICLASSICAL LIMIT; EQUATION; INEQUALITY; SPACE;
D O I
10.1063/1.4936164
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study a dispersive Euler-Poisson system in two dimensional Euclidean space. Our aim is to show unique existence and the zero-dispersion limit of the time-local weak solution. Since one may not use dispersive structure in the zero-dispersion limit, when reducing the regularity, lack of critical embedding H-1 subset of L-infinity becomes a bottleneck. We hence employ an estimate on the best constant of the Gagliardo-Nirenberg inequality. By this argument, a reasonable convergence rate for the zero-dispersion limit is deduced with a slight loss. We also consider the semiclassical limit problem of the Schrodinger-Poisson system in two dimensions. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Existence of multiple nontrivial solutions for a Schrodinger-Poisson system
    Chen, Shaowei
    Wang, Conglei
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 787 - 793
  • [22] An Euler-Poisson system in plasmas
    Nouri, A
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 2000, 41 : 442 - 450
  • [23] ADIABATIC APPROXIMATION OF THE SCHRODINGER-POISSON SYSTEM WITH A PARTIAL CONFINEMENT
    Ben Abdallah, Naoufel
    Mehats, Florian
    Pinaud, Olivier
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (03) : 986 - 1013
  • [24] Existence and Uniqueness of Multi-Bump Solutions for Nonlinear Schrodinger-Poisson Systems
    Yu, Mingzhu
    Chen, Haibo
    [J]. ADVANCED NONLINEAR STUDIES, 2021, 21 (03) : 661 - 681
  • [25] On the planar Schrodinger-Poisson system
    Cingolani, Silvia
    Weth, Tobias
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (01): : 169 - 197
  • [26] Existence of Positive Ground State Solution for the Nonlinear Schrodinger-Poisson System with Potentials
    Xiao, Lu
    Qian, Haiqin
    Qu, Mengmeng
    Wang, Jun
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [27] The existence and concentration of positive solutions for a nonlinear Schrodinger-Poisson system with critical growth
    Zhang, Jianjun
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
  • [28] The quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [29] THE SCHRODINGER-POISSON SYSTEM ON THE SPHERE
    Gerard, Patrick
    Mehats, Florian
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) : 1232 - 1268
  • [30] On a quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)