Hybrid particle swarm optimization for parameter estimation of Muskingum model

被引:59
|
作者
Ouyang, Aijia [1 ]
Li, Kenli [1 ]
Tung Khac Truong [2 ]
Sallam, Ahmed [3 ]
Sha, Edwin H-M. [4 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China
[2] Ind Univ Hochiminh City, Fac Informat Technol, Ho Chi Minh City, Vietnam
[3] Suez Canal Univ, Fac Comp & Informat, Ismailia, Egypt
[4] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 25卷 / 7-8期
基金
中国国家自然科学基金;
关键词
Particle swarm optimization; Nelder-Mead simplex method; Muskingum model; Hybrid algorithm; Parameter estimation; ALGORITHM; EVOLUTIONARY;
D O I
10.1007/s00521-014-1669-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Muskingum model is the most widely used and efficient method for flood routing in hydrologic engineering; however, the applications of this model still suffer from a lack of an efficient method for parameter estimation. Thus, in this paper, we present a hybrid particle swarm optimization (HPSO) to estimate the Muskingum model parameters by employing PSO hybridized with Nelder-Mead simplex method. The HPSO algorithm does not require initial values for each parameter, which helps to avoid the subjective estimation usually found in traditional estimation methods and to decrease the computation for global optimum search of the parameter values. We have carried out a set of simulation experiments to test the proposed model when applied to a Muskingum model, and we compared the results with eight superior methods. The results show that our scheme can improve the search accuracy and the convergence speed of Muskingum model for flood routing; that is, it has higher precision and faster convergence compared with other techniques.
引用
收藏
页码:1785 / 1799
页数:15
相关论文
共 50 条
  • [41] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    [J]. MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +
  • [42] Improving the Muskingum Flood Routing Method Using a Hybrid of Particle Swarm Optimization and Bat Algorithm
    Ehteram, Mohammad
    Othman, Faridah Binti
    Yaseen, Zaher Mundher
    Afan, Haitham Abdulmohsin
    Allawi, Mohammed Falah
    Malek, Marlinda Bt. Abdul
    Ahmed, Ali Najah
    Shahid, Shamsuddin
    Singh, Vijay P.
    El-Shafie, Ahmed
    [J]. WATER, 2018, 10 (06)
  • [43] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    [J]. BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03):
  • [44] Solving Parameter Identification Problem by Hybrid Particle Swarm Optimization
    Zahara, Erwie
    Liu, An
    [J]. INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 36 - +
  • [45] Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method
    Niazkar, Majid
    Afzali, Seied Hosein
    [J]. HYDROLOGY RESEARCH, 2017, 48 (05): : 1253 - 1267
  • [46] Parameter determination of impedance model by particle swarm optimization
    Gao Xue-lian
    Cui Zhen-nan
    Chen Yan-yu
    Feng Nan
    Zhao Lei
    Fan Jie-qing
    [J]. 2013 ASIA-PACIFIC SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (APEMC), 2013,
  • [47] Parameter estimation for the nonlinear forms of the Muskingum model
    Hirpurkar, Piyusha
    Ghare, Aniruddha D.
    [J]. Journal of Hydrologic Engineering, 2015, 20 (08):
  • [48] Parameter Estimation for the Nonlinear Forms of the Muskingum Model
    Hirpurkar, Piyusha
    Ghare, Aniruddha D.
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2015, 20 (08)
  • [49] An Investigation on Hybrid Particle Swarm Optimization Algorithms for Parameter Optimization of PV Cells
    Singh, Abha
    Sharma, Abhishek
    Rajput, Shailendra
    Bose, Amarnath
    Hu, Xinghao
    [J]. ELECTRONICS, 2022, 11 (06)
  • [50] Parameter Estimation of Different Photovoltaic Models Using Hybrid Particle Swarm Optimization and Gravitational Search Algorithm
    Gupta, Jyoti
    Hussain, Arif
    Singla, Manish Kumar
    Nijhawan, Parag
    Haider, Waseem
    Kotb, Hossam
    AboRas, Kareem M. M.
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (01):