Deep Reinforcement Learning Based Resource Allocation for LoRaWAN

被引:1
|
作者
Li, Aohan [1 ]
机构
[1] Univ Electrocommun, Grad Sch Informat & Engn, Tokyo, Japan
来源
2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL) | 2022年
关键词
LoRaWAN; Resource Management; Deep Reinforcement Learning; Energy Efficiency;
D O I
10.1109/VTC2022-Fall57202.2022.10012698
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is predicted that the number of Internet of Things (IoT) devices will be more than 75 billion by 2025, where a large portion of IoT devices will be long-range (LoRa) powered by batteries. The battery lifetime limitations and the spectrum shortage have been the main problems in realizing LoRa wide area network (LoRAWAN) for the devices in hard-to-reach areas. The dynamic spectrum access technique has gained tremendous research interest as a promising paradigm due to its outstanding performance in improving spectrum efficiency. How to realize intelligent resource allocation (RA) to avoid collisions among IoT devices with low energy consumption is an important problem in LoRaWAN. However, either synchronization and prior information estimation, such as channel state information (CSI), are required, or the energy consumption of LoRa devices is not considered in related work, which may decrease the energy efficiency of the LoRa devices. In addition, the necessary prior information may be challenging to obtain in future networks. To address these issues, we propose a deep Q learning-based RA (DQLRA) method for LoRaWAN. In our proposed method, the gateway (GW) trains the deep neural network (DNN) only based on the transmission state, i.e., transmission failure or success, and the corresponding device number of each LoRa device. Then, each LoRa device can make decisions based on its device number and ACK or NACK information using the trained DNN. Synchronization and prior information estimation are not required in our proposed method, which may improve the energy efficiency of IoT devices. Simulation results show that the proposed method can achieve the optimal frame success rate (FSR) in most scenarios.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Dynamic Resource Allocation in Network Slicing with Deep Reinforcement Learning
    Cai, Yue
    Cheng, Peng
    Chen, Zhuo
    Xiang, Wei
    Vucetic, Branka
    Li, Yonghui
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2955 - 2960
  • [32] ReLAx: Deep Reinforcement Learning Based Resource Allocation for Next-G RANs
    Younis, Ayman
    Sun, Chuanneng
    Pompili, Dario
    2024 IEEE 21ST INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SMART SYSTEMS, MASS 2024, 2024, : 437 - 445
  • [33] Resource Allocation Based on Alternating Direction Multiplier Method and Deep Reinforcement Learning Algorithm
    Guo, Xingkang
    Sun, Jun
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2022, 45 (06): : 122 - 126
  • [34] Deep Reinforcement Learning Based Resource Allocation for URLLC User-Centric Network
    Hu, Fajin
    Zhao, Junhui
    Liao, Jieyu
    Zhang, Huan
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 522 - 526
  • [35] A Resource Allocation Algorithm for Ultra-Dense Networks Based on Deep Reinforcement Learning
    Zhang, H. S.
    Wang, T. M.
    Shen, H. W.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2021, 16 (02) : 1 - 11
  • [36] Deep Reinforcement Learning Based Resource Allocation for V2V Communications
    Ye, Hao
    Li, Geoffrey Ye
    Juang, Biing-Hwang Fred
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (04) : 3163 - 3173
  • [37] Deep Multiagent Reinforcement-Learning-Based Resource Allocation for Internet of Controllable Things
    Gu, Bo
    Zhang, Xu
    Lin, Ziqi
    Alazab, Mamoun
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (05) : 3066 - 3074
  • [38] Resource Allocation for Multi-service NOMA System Based on Deep Reinforcement Learning
    Zhang, Zhenyu
    Zheng, Weijun
    Shao, Weiping
    Zhang, Yong
    Guo, Da
    HUMAN CENTERED COMPUTING, HCC 2021, 2022, 13795 : 219 - 231
  • [39] QoS based Deep Reinforcement Learning for V2X Resource Allocation
    Bhadauria, Shubhangi
    Shabbir, Zohaib
    Roth-Mandutz, Elke
    Fischer, Georg
    2020 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (BLACKSEACOM), 2020,
  • [40] Resource Allocation Scheme Based on Deep Reinforcement Learning for Device-to-Device Communications
    Yu, Seoyoung
    Jeong, Yun Jae
    Lee, Jeong Woo
    35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021), 2021, : 712 - 714