Fine control of lattice thermal conductivity in low-dimensional materials

被引:9
|
作者
Cammarata, Antonio [1 ]
Polcar, Tomas [1 ]
机构
[1] Czech Tech Univ, Dept Control Engn, Fac Elect Engn, Technicka 2, Prague 16627 6, Czech Republic
关键词
CRYSTAL; ENERGY; 1ST-PRINCIPLES; FRICTION;
D O I
10.1103/PhysRevB.103.035406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optimal regulation of lattice thermal conductivity in low-dimensional materials is fundamental to obtain highly efficient miniaturized devices. To this aim, we use quantum-mechanical based analyses to understand how atomic type and structural geometry determine electron density and lattice dynamic features ruling the thermal conduction. As a case study, we consider layered van der Waals transition metal dichalcogenides with a finite number of layers. We find that a large thermal conductivity is realized when the atomic bonds display highly covalent character, promoting fast motions of the cations in correspondence of the low-frequency phonon band. Such an effect is the result of the entangled electronic and phonon features, which are captured by the covalency and cophonicity metric. The investigation protocol that we present has general applicability and can be used to design novel thermal low-dimensional materials irrespective of the kind of atomic topology and chemical composition.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] The Chemical Engineering of Low-Dimensional Materials
    Paulus, Geraldine L. C.
    Shimizu, Steven
    Abrahamson, Joel T.
    Zhang, Jingqing
    Hilmer, Andrew J.
    Strano, Michael S.
    [J]. AICHE JOURNAL, 2011, 57 (05) : 1104 - 1118
  • [42] Low-dimensional perovskite materials and their optoelectronics
    Zhu, Tao
    Gong, Xiong
    [J]. INFOMAT, 2021, 3 (10) : 1039 - 1069
  • [43] The promise of low-dimensional thermoelectric materials
    Dresselhaus, MS
    Dresselhaus, G
    Sun, X
    Zhang, Z
    Cronin, SB
    Koga, T
    Ying, JY
    Chen, G
    [J]. MICROSCALE THERMOPHYSICAL ENGINEERING, 1999, 3 (02): : 89 - 100
  • [44] Low-dimensional hard magnetic materials
    Mohapatra, Jeotikanta
    Joshi, Pramanand
    Liu, J. Ping
    [J]. PROGRESS IN MATERIALS SCIENCE, 2023, 138
  • [45] Symmetry engineering in low-dimensional materials
    Li, Jiawei
    Li, Xuesong
    Zhu, Hongwei
    [J]. MATERIALS TODAY, 2024, 75 : 187 - 209
  • [46] Low-dimensional materials for photovoltaic application
    Kondrotas, Rokas
    Chen, Chao
    Liu, XinXing
    Yang, Bo
    Tang, Jiang
    [J]. JOURNAL OF SEMICONDUCTORS, 2021, 42 (03)
  • [47] Low-dimensional materials for thermoelectric applications
    Boulet, Pascal
    Record, Marie-Christine
    [J]. INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2012, 9 (3-7) : 368 - 376
  • [48] The promise of low-dimensional thermoelectric materials
    Dresselhaus, Mildred S.
    Dresselhaus, G.
    Sun, X.
    Zhang, Z.
    Cronin, S.B.
    Koga, T.
    Ying, J.Y.
    Chen, G.
    [J]. Microscale Thermophysical Engineering, 3 (02): : 89 - 100
  • [49] Low-dimensional materials for photovoltaic application
    Rokas Kondrotas
    Chao Chen
    Xin Xing Liu
    Bo Yang
    Jiang Tang
    [J]. Journal of Semiconductors, 2021, 42 (03) : 46 - 56
  • [50] Negative photoconductivity in low-dimensional materials*
    Cui, Boyao
    Xing, Yanhui
    Han, Jun
    Lv, Weiming
    Lv, Wenxing
    Lei, Ting
    Zhang, Yao
    Ma, Haixin
    Zeng, Zhongming
    Zhang, Baoshun
    [J]. CHINESE PHYSICS B, 2021, 30 (02)