Comparison of Kalman Filter-based State of Charge Estimation Strategies for Li-Ion Batteries

被引:0
|
作者
Wang, Weizhong [1 ]
Wang, Deqiang [1 ]
Wang, Xiao [1 ]
Li, Tongrui [2 ]
Ahmed, Ryan [2 ]
Habibi, Saeid [2 ]
Emadi, Ali [1 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada
[2] McMaster Univ, Dept Mech Engn, Hamilton, ON, Canada
关键词
MANAGEMENT-SYSTEMS; PART; PACKS; IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Currently, the automotive industry is experiencing a significant technology shift from internal combustion engine propelled vehicles to second generation battery electric vehicles (BEVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). The battery pack represents the core of the electric vehicle powertrain and its most expensive component and therefore requires continuous condition monitoring and control. As such, extensive research has been conducted to estimate the battery critical parameters such as state-of-charge (SOC) and state-of-health (SOH). In order to accurately estimate these parameters, a high fidelity battery model has to work collaboratively with a robust estimation strategy onboard of the battery management system (BMS). In this paper, three Kalman Filter-based estimation strategies are analyzed and compared, namely: The Extended Kalman Filter (EKF), Sigma-point Kalman filtering (SPKF) and Cubature Kalman filter (CKF). These estimation strategies have been compared based on the first-order equivalent circuit-based model. Estimation strategies have been compared based on their SOC estimation accuracy, robustness to initial SOC error and computation requirement.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] State of charge estimation of a Li-ion battery based on extended Kalman filtering and sensor bias
    Al-Gabalawy, Mostafa
    Hosny, Nesreen S.
    Dawson, James A.
    Omar, Ahmed, I
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (05) : 6708 - 6726
  • [42] Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis
    Hossain, M.
    Haque, M. E.
    Arif, M. T.
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [43] State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter
    Xu, Yidan
    Hu, Minghui
    Zhou, Anjian
    Li, Yunxiao
    Li, Shuxian
    Fu, Chunyun
    Gong, Changchao
    APPLIED MATHEMATICAL MODELLING, 2020, 77 : 1255 - 1272
  • [44] A Li-Ion Battery State of Charge Estimation Strategy Based on the Suboptimal Multiple Fading Factor Extended Kalman Filter Algorithm
    Wu, Weibin
    Zeng, Jinbin
    Jian, Qifei
    Tang, Luxin
    Hou, Junwei
    Han, Chongyang
    Song, Qian
    Luo, Yuanqiang
    PROCESSES, 2024, 12 (05)
  • [45] State of Charge Estimation of Lithium-ion Batteries Based on An Adaptive Cubature Kalman Filter
    Chai, Haoyu
    Gao, Zhe
    Jiao, Zhiyuan
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 5244 - 5249
  • [46] State of charge estimation of power Li-ion batteries using a hybrid estimation algorithm based on UKF
    He, Zhigang
    Chen, Dong
    Pan, Chaofeng
    Chen, Long
    Wang, Shaohua
    ELECTROCHIMICA ACTA, 2016, 211 : 101 - 109
  • [47] Transfer Learning-Based State of Charge and State of Health Estimation for Li-Ion Batteries: A Review
    Shen, Liyuan
    Li, Jingjing
    Meng, Lichao
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (01): : 1465 - 1481
  • [48] Challenges and Strategies for Fast Charge of Li-Ion Batteries
    Zhang, Sheng S.
    CHEMELECTROCHEM, 2020, 7 (17) : 3569 - 3577
  • [49] A Novel SOC Estimation Method for Li-Ion Batteries Based on Improved Kalman Filter with Parameter Online Identification
    Xiong Yonghua
    Yang Yan
    He Yong
    Wu Min
    An Jianqi
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 6820 - 6825
  • [50] A method of SOC estimation for power Li-ion batteries based on equivalent circuit model and extended Kalman filter
    Zhang, Siwen
    Sun, Hua
    Lyu, Chao
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 2683 - 2687