On the errors of multidimensional MRA based on non-separable scaling functions

被引:3
|
作者
Bacchelli, Barbara [1 ]
Bozzini, Mira [1 ]
Rossini, Milvia [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
elliptic splines; polyharmonic splines; MRA; convergence rate; denoise;
D O I
10.1142/S0219691306001397
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we deal with two different problems. First, we provide the convergence rates of multiresolution approximations, with respect to the supremum norm, for the class of elliptic splines defined in Ref. 10, and in particular for polyharmonic splines. Secondly, we consider the problem of recovering a function from a sample of noisy data. To this end, we define a linear and smooth estimator obtained from a multiresolution process based on polyharmonic splines. We discuss its asymptotic properties and we prove that it converges to the unknown function almost surely.
引用
收藏
页码:475 / 488
页数:14
相关论文
共 50 条
  • [21] A new approach to the design of multidimensional non-separable two-channel orthonormal filterbanks
    Wei, D
    Guo, S
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 548 - 551
  • [22] SEPARABLE AND NON-SEPARABLE SPIN-GLASS MODELS
    BENAMIRA, F
    PROVOST, JP
    VALLEE, G
    [J]. JOURNAL DE PHYSIQUE, 1985, 46 (08): : 1269 - 1275
  • [23] FADDEEV EQUATIONS WITH A SUM OF SEPARABLE AND NON-SEPARABLE POTENTIALS
    YAES, RJ
    [J]. NUCLEAR PHYSICS A, 1969, A131 (03) : 623 - &
  • [24] N stage non-separable two dimensional wavelet transform for reduction of rounding errors
    Iwahashi, M
    Delgeramaa, M
    Ueno, K
    Kambayashi, N
    [J]. PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV: DIGITAL SIGNAL PROCESSING-COMPUTER AIDED NETWORK DESIGN-ADVANCED TECHNOLOGY, 2003, : 313 - 316
  • [25] Local determinacy with non-separable utility
    Pintus, Patrick A.
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2007, 31 (02): : 669 - 682
  • [26] On binormality in non-separable Banach spaces
    Kurka, Ondrej
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (02) : 425 - 435
  • [27] Upstream regulation and non-separable innovation
    Michael L. Polemis
    Markos Tselekounis
    [J]. Journal of Industrial and Business Economics, 2022, 49 : 301 - 312
  • [28] HIERARCHICAL OPTIMIZATION FOR NONLINEAR DYNAMICAL-SYSTEMS WITH NON-SEPARABLE COST FUNCTIONS
    SINGH, M
    HASSAN, MF
    [J]. AUTOMATICA, 1978, 14 (01) : 99 - 101
  • [29] Non-separable utilities and aggregate instability
    Chen Been-Lon
    Lee, Shun-Fa
    Raurich, Xavier
    [J]. INTERNATIONAL JOURNAL OF ECONOMIC THEORY, 2020, 16 (02) : 222 - 237
  • [30] On the implementation of non-separable vector levelings
    Zanoguera, F
    Meyer, F
    [J]. MATHEMATICAL MORPHOLOGY, PROCEEDINGS, 2002, : 369 - 377