IMPROVEMENT OF DOSE ESTIMATION PROCESS USING ARTIFICIAL NEURAL NETWORKS

被引:7
|
作者
Amit, Gal [1 ]
Datz, Hanan [1 ]
机构
[1] Soreq Nucl Res Ctr, Radiat Safety Div, Yavne, Israel
关键词
CURVE;
D O I
10.1093/rpd/ncy185
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present here for the first time a fast and reliable automatic algorithm based on artificial neural networks for the anomaly detection of a thermoluminescence dosemeter (TLD) glow curves (GCs), and compare its performance with formerly developed support vector machine method. The GC shape of TLD depends on numerous physical parameters, which may significantly affect it. When integrated into a dosimetry laboratory, this automatic algorithm can classify anomalous' (having any kind of anomaly) GCs for manual review, and regular' (acceptable) GCs for automatic analysis. The new algorithm performance is then compared with two kinds of formerly developed support vector machine classifiers-regular and weighted ones-using three different metrics. Results show an impressive accuracy rate of 97% for TLD GCs that are correctly classified to either of the classes.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 50 条
  • [1] ARTIFICIAL NEURAL NETWORKS IN PROCESS ESTIMATION AND CONTROL
    WILLIS, MJ
    MONTAGUE, GA
    DIMASSIMO, C
    THAM, MT
    MORRIS, AJ
    [J]. AUTOMATICA, 1992, 28 (06) : 1181 - 1187
  • [2] Estimation of glandular dose in mammography based on artificial neural networks
    Trevisan Massera, Rodrigo
    Tomal, Alessandra
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (09):
  • [3] Direction of Arrival Estimation by Using Artificial Neural Networks
    Unlersen, Muhammes Fahri
    Yaldiz, Ercan
    [J]. UKSIM-AMSS 10TH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS), 2016, : 242 - 245
  • [4] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    [J]. JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [5] Probability density estimation using artificial neural networks
    Likas, A
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (02) : 167 - 175
  • [6] DIRECTION OF ARRIVAL ESTIMATION USING ARTIFICIAL NEURAL NETWORKS
    JHA, S
    DURRANI, T
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05): : 1192 - 1201
  • [7] Efficient estimation of osteoporosis using artificial neural networks
    Lemineur, Gerald
    Harba, Rachid
    Kilic, Niyazi
    Ucan, Osman N.
    Osman, Onur
    Benhamou, Laurent
    [J]. IECON 2007: 33RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, CONFERENCE PROCEEDINGS, 2007, : 3039 - +
  • [8] Solar radiation estimation using artificial neural networks
    Dorvlo, ASS
    Jervase, JA
    Al-Lawati, A
    [J]. APPLIED ENERGY, 2002, 71 (04) : 307 - 319
  • [9] Estimation of daily evaporation using Artificial Neural Networks
    Dogan, Emrah
    Isik, Sabahattin
    Sandalci, Mehmet
    [J]. TEKNIK DERGI, 2007, 18 (02): : 4119 - 4131
  • [10] Wireless User Estimation Using Artificial Neural Networks
    Abinoja, Daniel
    Bedruz, Rhen Anjerome
    Jovellanos, Kevin Loo
    Bandala, Argel
    [J]. 2015 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY,COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2015, : 475 - +