Analysis of Multiconductor Transmission Lines Using the CN-FDTD Method

被引:3
|
作者
Honarbakhsh, Babak [1 ]
Asadi, Shahrooz [1 ]
机构
[1] Shahid Beheshti Univ, Dept Elect Engn, Tehran 1983963113, Iran
关键词
Numerical stability; Stability criteria; Dispersion; Time-domain analysis; Transmission line matrix methods; Frequency division multiplexing; Crank– Nicolson (CN); dispersion; finite-difference time-domain (FDTD); implicit; stability; multiconductor transmission lines (MTL); CRANK-NICOLSON SCHEME; TIME-DOMAIN METHOD; COMPUTATIONAL ELECTROMAGNETICS CEM; SELECTIVE VALIDATION FSV; FINITE-DIFFERENCE; SIMULATION; LOSSY;
D O I
10.1109/TEMC.2020.2987652
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Crank-Nicolson (CN) version of the finite-difference time-domain (FDTD) method is applied to the analysis of multiconductor transmission lines (MTLs). Stability and dispersion issues are investigated for different cases, including single and multiconductor lossless and lossy lines. It is shown that for MTLs, the stability of the CN-FDTD method is conditioned by the structure of coupling matrices. Sufficient conditions for unconditional stability are derived. Four practical problems are analyzed using the CN-FDTD method. Numerical results are compared to measurements and leap-frog method. For the first three cases, using the CN method, the Courant number can be increased by a factor of 50 with good agreement with measurement results.
引用
收藏
页码:2823 / 2831
页数:9
相关论文
共 50 条
  • [21] Progress in Studies of Transients Analysis Method of Multiconductor Transmission Lines
    Jiao, Chaoqun
    Sun, Yi
    [J]. PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 249 - 253
  • [22] Transient analysis of multiconductor transmission lines
    Zhang, Yuting
    Cai, Zhi
    Zhang, Hua
    [J]. Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2014, 29 (02): : 377 - 384
  • [23] FDTD Analysis using Constant Parameter Modeling for the Calculation of Transient Responses and Voltage Profiles on Multiconductor Overhead Transmission Lines
    Kaloudas, C. G.
    Papagiannis, Grigoris K.
    [J]. 2014 49TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2014,
  • [24] A Simplified Model for Nonuniform Multiconductor Transmission Lines Using the Method of Characteristics
    Moreno, Pablo
    Chavez, Alejandro R.
    Naredo, Jose L.
    [J]. 2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 2332 - 2336
  • [25] Clarification of a decoupling method for multiconductor transmission lines
    Szidarovszky, F
    Palusinski, OA
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (05) : 648 - 649
  • [26] ANALYSIS OF PLANAR MULTICONDUCTOR TRANSMISSION-LINE SYSTEMS WITH THE METHOD OF LINES
    DIESTEL, H
    [J]. AEU-ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1987, 41 (03): : 169 - 175
  • [27] Analysis of FDTD Crosstalk of Multiconductor Overhead Transmission Lines with a Frequency-Varying Ground Impedance Loss
    Sun, Yaxiu
    Liu, Jing
    Su, Zhen
    Wang, Xinkai
    Liang, Fei
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY AND SIGNAL & POWER INTEGRITY VIRTUAL SYMPOSIUM(IEEE EMC+SIPI), 2020, : 29 - 33
  • [28] MULTICONDUCTOR MICROSTRIP LINE MODELLING USING FDTD METHOD
    Krukonis, Audrius
    Urbanavicius, Vytautas
    [J]. ELECTROMAGNETIC DISTURBANCES EMD' 2012, 2012, : 60 - 63
  • [29] Linear Analysis of High-Frequency Field-Effect Transistors Using the CN-FDTD Method (vol 65, pg 1946, 2017)
    Honarbakhsh, Babak
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (09) : 4090 - 4090
  • [30] Diakoptic approach to analysis of multiconductor transmission lines
    Olcan, Dragan I.
    Stevanovic, Ivica M.
    Mosig, Juan R.
    Djordievic, Antonije R.
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2008, 50 (04) : 931 - 936