Generative Model with Semantic Embedding and Integrated Classifier for Generalized Zero-Shot Learning

被引:0
|
作者
Pambala, Ayyappa Kumar [1 ]
Dutta, Titir [1 ]
Biswas, Soma [1 ]
机构
[1] Indian Inst Sci, Bangalore, Karnataka, India
关键词
D O I
10.1109/wacv45572.2020.9093625
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative models have achieved impressive performance for the generalized zero-shot learning task by learning the mapping from attributes to feature space. In this work, we propose to derive semantic inferences from images and use them for the generation, which enables us to capture the bidirectional information i.e., visual to semantic and semantic to visual spaces. Specifically, we propose a Semantic Embedding module which not only gives image specific semantic information to the generative model for generation of better features, but also makes sure that the generated features can be mapped to the correct semantic space. We also propose an Integrated Classifier, which is trained along with the generator. This module not only eliminates the requirement of additional classifier for new object categories which is required by the existing generative approaches, but also facilitates the generation of more discriminative and useful features. This approach can be used seamlessly for the task of few-shot learning. Extensive experiments on four benchmark datasets, namely, CUB, SUN, AWA1, AWA2 for both zero-shot learning and few-shot setting show the effectiveness of the proposed approach.
引用
收藏
页码:1226 / 1235
页数:10
相关论文
共 50 条
  • [41] Learning visual-and-semantic knowledge embedding for zero-shot image classification
    Dehui Kong
    Xiliang Li
    Shaofan Wang
    Jinghua Li
    Baocai Yin
    [J]. Applied Intelligence, 2023, 53 : 2250 - 2264
  • [42] Bidirectional generative transductive zero-shot learning
    Li, Xinpeng
    Zhang, Dan
    Ye, Mao
    Li, Xue
    Dou, Qiang
    Lv, Qiao
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 5313 - 5326
  • [43] Learning visual-and-semantic knowledge embedding for zero-shot image classification
    Kong, Dehui
    Li, Xiliang
    Wang, Shaofan
    Li, Jinghua
    Yin, Baocai
    [J]. APPLIED INTELLIGENCE, 2023, 53 (02) : 2250 - 2264
  • [44] Classifier and Exemplar Synthesis for Zero-Shot Learning
    Soravit Changpinyo
    Wei-Lun Chao
    Boqing Gong
    Fei Sha
    [J]. International Journal of Computer Vision, 2020, 128 : 166 - 201
  • [45] Classifier and Exemplar Synthesis for Zero-Shot Learning
    Changpinyo, Soravit
    Chao, Wei-Lun
    Gong, Boqing
    Sha, Fei
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (01) : 166 - 201
  • [46] Bidirectional generative transductive zero-shot learning
    Xinpeng Li
    Dan Zhang
    Mao Ye
    Xue Li
    Qiang Dou
    Qiao Lv
    [J]. Neural Computing and Applications, 2021, 33 : 5313 - 5326
  • [47] Generative Mixup Networks for Zero-Shot Learning
    Xu, Bingrong
    Zeng, Zhigang
    Lian, Cheng
    Ding, Zhengming
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022,
  • [48] Transductive Unbiased Embedding for Zero-Shot Learning
    Song, Jie
    Shen, Chengchao
    Yang, Yezhou
    Liu, Yang
    Song, Mingli
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1024 - 1033
  • [49] Disentangled Ontology Embedding for Zero-shot Learning
    Geng, Yuxia
    Chen, Jiaoyan
    Zhang, Wen
    Xu, Yajing
    Chen, Zhuo
    Pan, Jeff Z.
    Huang, Yufeng
    Xiong, Feiyu
    Chen, Huajun
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 443 - 453
  • [50] A De-redundant Network with Enhanced Classifier for Generalized Zero-Shot Learning
    Ding, Jiayu
    Hu, Xiao
    Xiang, Junjiang
    [J]. 2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 253 - 258