Intrusion Detection System Based on Gradient Corrected Online Sequential Extreme Learning Machine

被引:7
|
作者
Qaiwmchi, Nedhal Ahmad Hamdi [1 ]
Amintoosi, Haleh [1 ]
Mohajerzadeh, Amirhossein [1 ]
机构
[1] Ferdowsi Univ Mashhad, Fac Engn, Dept Comp Engn, Mashhad 9177948974, Razavi Khorasan, Iran
来源
IEEE ACCESS | 2021年 / 9卷
关键词
Training; Intrusion detection; Optimization; Classification algorithms; Prediction algorithms; Neurons; Power system stability; Online sequential extreme learning machine (OSELM); intrusion detection system (IDS); back-propagation (BP); activation function; FEATURE-SELECTION; ALGORITHM; ELM;
D O I
10.1109/ACCESS.2020.3047933
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, Intrusion Detection System (IDS) is an active research topic with machine learning nature. A single-hidden layer feedforward neural network (SLFN) trained on the approach of extreme learning machine (ELM) is used for (IDS). The encouraging factors for its usage are its fast learning and supportability of sequential learning in its online sequential extreme learning machine (OSELM) variant. An issue with OSELM that has been addressed by researchers is its random weights nature of the input-hidden layer. Most approaches use the concept of metaheuristic optimisation for determining the optimal weights of OSELM and resolve the random weight. However, metaheuristic approaches require many trials to determine the optimal one. Hence, there is concern about the convergence aspect and speed. This article proposes a novel approach for finding the optimal weights of the input-hidden layer. This article presents an approach for an integration between OSELM and back-propagation designated as (OSELM-BP). After integration, BP changes the random weights iteratively and uses an iterated evaluation of the generated error for feedback correction of the weights. The approach is evaluated based on various scenarios of activation functions for OSELM on the one hand and the number of iterations for BP on the other. An extensive evaluation of the approach and comparison with the original OSELM reveal a superiority of OSELM-BP in reaching optimal accuracy with a small number of iterations.
引用
收藏
页码:4983 / 4999
页数:17
相关论文
共 50 条
  • [31] IoT Intrusion Detection System Based on Machine Learning
    Xu, Bayi
    Sun, Lei
    Mao, Xiuqing
    Ding, Ruiyang
    Liu, Chengwei
    ELECTRONICS, 2023, 12 (20)
  • [32] Online sequential extreme learning machine in nonstationary environments
    Ye, Yibin
    Squartini, Stefano
    Piazza, Francesco
    NEUROCOMPUTING, 2013, 116 : 94 - 101
  • [33] Online sequential extreme learning machine with forgetting mechanism
    Zhao, Jianwei
    Wang, Zhihui
    Park, Dong Sun
    NEUROCOMPUTING, 2012, 87 : 79 - 89
  • [34] Augmented Online Sequential Quaternion Extreme Learning Machine
    Zhu, Shuai
    Wang, Hui
    Lv, Hui
    Zhang, Huisheng
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1161 - 1186
  • [35] Augmented Online Sequential Quaternion Extreme Learning Machine
    Shuai Zhu
    Hui Wang
    Hui Lv
    Huisheng Zhang
    Neural Processing Letters, 2021, 53 : 1161 - 1186
  • [36] A Constructive Enhancement for Online Sequential Extreme Learning Machine
    Lan, Yuan
    Soh, Yeng Chai
    Huang, Guang-Bin
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 208 - 213
  • [37] Online sequential extreme learning machine with the increased classes
    Yu, Hualong
    Xie, Houjuan
    Yang, Xibei
    Zou, Haitao
    Gao, Shang
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 90
  • [38] Online sequential reduced kernel extreme learning machine
    Deng, Wan-Yu
    Ong, Yew-Soon
    Tan, Puay Siew
    Zheng, Qing-Hua
    NEUROCOMPUTING, 2016, 174 : 72 - 84
  • [39] An Enhanced Online Sequential Extreme Learning Machine Algorithm
    Jun, Yu
    Er, Meng Joo
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 2902 - 2907
  • [40] Partitioned online sequential extreme learning machine for large ordered system modeling
    Lim, JunSeok
    NEUROCOMPUTING, 2013, 102 : 59 - 64