Optimal Data Partition for Semi-Automated Labeling

被引:0
|
作者
Lopresti, Daniel [1 ]
Nagy, George [2 ]
机构
[1] Lehigh Univ, Bethlehem, PA 18015 USA
[2] Rensselaer Polytech Inst, Troy, NY 12180 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a pattern recognition sequence consisting of alternating steps of interactive labeling, classifier training, and automated labeling (e.g., CAVIAR systems), the choice of sample size at each step affects the overall amount of human interaction necessary to label all the samples correctly. The appropriate splits depend on the error rate of the classifier as a function of the size of the training set and, perhaps surprisingly, are independent of the relative costs of interactive correction and confirmation. We model such a system and report the sequence of optimal data partitions for a representative range of parameters.
引用
收藏
页码:286 / 289
页数:4
相关论文
共 50 条
  • [41] Semi-automated harmonization and selection of chemical data for risk and impact assessment
    Aurisano, Nicolo
    Fantke, Peter
    [J]. CHEMOSPHERE, 2022, 302
  • [42] Semi-automated sensitivity analysis to assess systematic errors in observational data
    Lash, TL
    Fink, AK
    [J]. EPIDEMIOLOGY, 2003, 14 (04) : 451 - 458
  • [43] A semi-automated approach to validation and error diagnostics of water network data
    Kirstein, Jonas Kjeld
    Hogh, Klavs
    Rygaard, Martin
    Borup, Morten
    [J]. URBAN WATER JOURNAL, 2019, 16 (01) : 1 - 10
  • [44] An approach for semi-automated data quality assurance within BIM models
    Cann, Steven
    Mahamadu, Abdul-Majeed
    Prabhakaran, Abhinesh
    Dziekonski, Krzysztof
    Joseph, Rotimi
    [J]. Engineering Management in Production and Services, 2022, 14 (04) : 114 - 125
  • [45] Semi-automated pulmonary nodule interval segmentation using the NLST data
    Balagurunathan, Yoganand
    Beers, Andrew
    Kalpathy-Cramer, Jayashree
    McNitt-Gray, Michael
    Hadjiiski, Lubomir
    Zhao, Bensheng
    Zhu, Jiangguo
    Yang, Hao
    Yip, Stephen S. F.
    Aerts, Hugo J. W. L.
    Napel, Sandy
    Cherezov, Dmitrii
    Cha, Kenny
    Chan, Heang-Ping
    Flores, Carlos
    Garcia, Alberto
    Gillies, Robert
    Goldgof, Dmitry
    [J]. MEDICAL PHYSICS, 2018, 45 (03) : 1093 - 1107
  • [46] Verifying big data topologies by-design: a semi-automated approach
    Bersani, Marcello M.
    Marconi, Francesco
    Tamburri, Damian A.
    Nodari, Andrea
    Jamshidi, Pooyan
    [J]. JOURNAL OF BIG DATA, 2019, 6 (01)
  • [47] Classification of semi-automated labeled MindRove Armband recorded EMG data
    Kollod, Csaba Marton
    Eftimiu, Nikomidisz Jorgosz
    Marton, Gergely
    Ulbert, Istvan
    [J]. 2022 IEEE 22ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 8TH IEEE INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCE AND ROBOTICS (CINTI-MACRO), 2022, : 381 - 385
  • [48] Verifying big data topologies by-design: a semi-automated approach
    Marcello M. Bersani
    Francesco Marconi
    Damian A. Tamburri
    Andrea Nodari
    Pooyan Jamshidi
    [J]. Journal of Big Data, 6
  • [49] A Semi-Automated Hybrid Schema Matching Framework for Vegetation Data Integration
    Asif-Ur-Rahman, Md.
    Hossain, Bayzid Ashik
    Bewong, Michael
    Islam, Md Zahidul
    Zhao, Yanchang
    Groves, Jeremy
    Judith, Rory
    [J]. arXiv, 2023,
  • [50] Semi-Automated Inversion-Specific Data Selection for Volcano Tomography
    Guardo, R.
    De Siena, L.
    [J]. FRONTIERS IN EARTH SCIENCE, 2022, 10