Approximative compactness and Asplund property in Banach function spaces and in Orlicz-Bochner spaces in particular with application

被引:2
|
作者
Shang, Shaoqiang [1 ]
Cui, Yunan [2 ]
机构
[1] Northeast Forestry Univ, Dept Math, Harbin 150040, Peoples R China
[2] Harbin Univ Sci & Technol, Dept Math, Harbin 150080, Peoples R China
关键词
Approximative compactness; Asplund space; Radon-Nikodym property; Banach space; Orlicz-Bochner function space; METRIC GENERALIZED INVERSE; CONVEXITY; ROTUNDITY; OPERATOR;
D O I
10.1016/j.jmaa.2014.07.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper it is shown that: (1) If every weak* hyperplane of X* is approximatively compact, then (a) X is an Asplund space; (b) X* has the Radon Nikodym property. (2) Criteria for approximative compactness of every weakly* hyperplane of Orlicz Bochner function spaces equipped with the Orlicz norm are given. (3) If X has a Frechet differentiable norm, then (a) Orlicz Bochner function spaces L-M(0) (X*) have the Radon Nikodym property if and only if M is an element of Delta(2); (b) Orlicz Bochner function spaces E-N (X) are Asplund spaces if and only if M is an element of Delta(2). (4) We give an important application of approximative compactness to the theory of generalized inverses for operators between Banach spaces and Orlicz Bochner function spaces. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1377 / 1395
页数:19
相关论文
共 50 条
  • [21] Compactness of Bochner representable operators on Orlicz spaces
    Nowak, Marian
    POSITIVITY, 2009, 13 (01) : 193 - 199
  • [22] Integral representation of linear operators on Orlicz-Bochner spaces
    Feledziak, Krzysztof
    Nowak, Marian
    COLLECTANEA MATHEMATICA, 2010, 61 (03) : 277 - 290
  • [23] Uniform nonsquareness and locally uniform nonsquareness in Orlicz-Bochner function spaces and applications
    Shang, Shaoqiang
    Cui, Yunan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) : 2056 - 2076
  • [24] Approximative compactness and full rotundity in Musielak-Orlicz spaces and Lorentz-Orlicz spaces
    Hudzik, Henryk
    Kowalewski, Wojciech
    Lewicki, Grzegorz
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2006, 25 (02): : 163 - 192
  • [25] APPROXIMATIVE RECONSTRUCTION PROPERTY IN BANACH SPACES
    Tara
    Shekhar, Chander
    Rathore, G. S.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (01): : 1 - 15
  • [26] Nonsquareness and Locally Uniform Nonsquareness in Orlicz-Bochner Function Spaces Endowed with Luxemburg Norm
    Shang, Shaoqiang
    Cui, Yunan
    Fu, Yongqiang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [27] Nonsquareness and Locally Uniform Nonsquareness in Orlicz-Bochner Function Spaces Endowed with Luxemburg Norm
    Shaoqiang Shang
    Yunan Cui
    Yongqiang Fu
    Journal of Inequalities and Applications, 2011
  • [28] I-convexity and Q-convexity in Orlicz-Bochner function spaces endowed with the Orlicz norm
    Gong, Wanzhong
    Dong, Xiaoli
    Wang, Kangji
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (11) : 2369 - 2382
  • [29] BOCHNER PROPERTY IN BANACH-SPACES
    NAIKNIMBALKAR, U
    ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1981, 17 (01): : 1 - 19
  • [30] λ property for Bochner-Orlicz sequence spaces with Orlicz norm
    Shi, Zhongrui
    Xie, Linsen
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (05): : 1131 - 1145