Approximative compactness and Asplund property in Banach function spaces and in Orlicz-Bochner spaces in particular with application

被引:2
|
作者
Shang, Shaoqiang [1 ]
Cui, Yunan [2 ]
机构
[1] Northeast Forestry Univ, Dept Math, Harbin 150040, Peoples R China
[2] Harbin Univ Sci & Technol, Dept Math, Harbin 150080, Peoples R China
关键词
Approximative compactness; Asplund space; Radon-Nikodym property; Banach space; Orlicz-Bochner function space; METRIC GENERALIZED INVERSE; CONVEXITY; ROTUNDITY; OPERATOR;
D O I
10.1016/j.jmaa.2014.07.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper it is shown that: (1) If every weak* hyperplane of X* is approximatively compact, then (a) X is an Asplund space; (b) X* has the Radon Nikodym property. (2) Criteria for approximative compactness of every weakly* hyperplane of Orlicz Bochner function spaces equipped with the Orlicz norm are given. (3) If X has a Frechet differentiable norm, then (a) Orlicz Bochner function spaces L-M(0) (X*) have the Radon Nikodym property if and only if M is an element of Delta(2); (b) Orlicz Bochner function spaces E-N (X) are Asplund spaces if and only if M is an element of Delta(2). (4) We give an important application of approximative compactness to the theory of generalized inverses for operators between Banach spaces and Orlicz Bochner function spaces. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1377 / 1395
页数:19
相关论文
共 50 条
  • [1] Drop properties and approximative compactness in Orlicz-Bochner function spaces
    Gong, Wanzhong
    Shi, Zhongrui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 748 - 756
  • [2] WEAK APPROXIMATIVE COMPACTNESS OF HYPERPLANE AND ASPLUND PROPERTY IN MUSIELAK-ORLICZ-BOCHNER FUNCTION SPACES
    Shang, Shaoqiang
    Cui, Yunan
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01): : 327 - 346
  • [3] Weak compactness in Kothe-Bochner spaces and Orlicz-Bochner spaces
    Nowak, M
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (01): : 73 - 86
  • [4] APPROXIMATIVE COMPACTNESS IN MUSIELAK-ORLICZ FUNCTION SPACES OF BOCHNER TYPE
    Shang, Shaoqiang
    Cui, Yunan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (01): : 143 - 163
  • [5] Integration in Orlicz-Bochner Spaces
    Nowak, Marian
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [6] SMOOTHNESS AND APPROXIMATIVE COMPACTNESS IN ORLICZ FUNCTION SPACES
    Shang, Shaoqiang
    Cui, Yunan
    Fu, Yongqiang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (01): : 26 - 38
  • [7] Approximative compactness in Orlicz spaces
    Hudzik, H
    Wang, BX
    JOURNAL OF APPROXIMATION THEORY, 1998, 95 (01) : 82 - 89
  • [8] Noncreasy and uniformly noncreasy Orlicz-Bochner function spaces
    Shi, Zhongrui
    Liu, Chunyan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6153 - 6161
  • [9] MONOTONE POINTS IN ORLICZ-BOCHNER SEQUENCE SPACES
    Wanzhong Gong
    Zhongrui Shi
    Analysis in Theory and Applications, 2012, 28 (04) : 301 - 311
  • [10] Continuous linear operators on Orlicz-Bochner spaces
    Nowak, Marian
    OPEN MATHEMATICS, 2019, 17 : 1147 - 1155