Exact inference in contingency tables via stochastic approximation Monte Carlo

被引:1
|
作者
Jung, Byoung Cheol [2 ]
So, Sunha [3 ]
Cheon, Sooyoung [1 ]
机构
[1] Korea Univ, Dept Informat Stat, Sejong City 339700, South Korea
[2] Univ Seoul, Dept Stat, Seoul 130743, South Korea
[3] Woori Bank, Risk Model Validat Team, Seoul 100792, South Korea
基金
新加坡国家研究基金会;
关键词
Complete or incomplete contingency table; Exact inference; Structural zero cells; Importance sampling; Markov chain Monte Carlo; Stochastic approximation Monte Carlo; EXACT CONDITIONAL TESTS; GOODNESS-OF-FIT; MARKOV BASES; LINEAR-MODELS; STATISTICS; ALGORITHM;
D O I
10.1016/j.jkss.2013.06.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Monte Carlo methods for the exact inference have received much attention recently in complete or incomplete contingency table analysis. However, conventional Markov chain Monte Carlo, such as the Metropolis Hastings algorithm, and importance sampling methods sometimes generate the poor performance by failing to produce valid tables. In this paper, we apply an adaptive Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm (SAMC; Liang, Liu, & Carroll, 2007), to the exact test of the goodness-of-fit of the model in complete or incomplete contingency tables containing some structural zero cells. The numerical results are in favor of our method in terms of quality of estimates. (C) 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 45
页数:15
相关论文
共 50 条
  • [1] Exact inference in contingency tables via stochastic approximation Monte Carlo
    Byoung Cheol Jung
    Sunha Soa
    Sooyoung Cheon
    Journal of the Korean Statistical Society, 2014, 43 : 31 - 45
  • [2] Approximating Exact Test of Mutual Independence in Multiway Contingency Tables via Stochastic Approximation Monte Carlo
    Cheon, Sooyoung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (05) : 837 - 846
  • [3] Monte Carlo exact tests for square contingency tables
    Smith, PWF
    Forster, JJ
    McDonald, JW
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1996, 159 : 309 - 321
  • [4] Counting Contingency Tables via Multistage Markov Chain Monte Carlo
    Fishman, George S.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (03) : 713 - 738
  • [5] EXACT INFERENCE FOR CONTINGENCY-TABLES WITH ORDERED CATEGORIES
    AGRESTI, A
    MEHTA, CR
    PATEL, NR
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) : 453 - 458
  • [6] Markov chain Monte Carlo exact tests for incomplete two-way contingency tables
    Aoki, S
    Takemura, A
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2005, 75 (10) : 787 - 812
  • [7] Exact unconditional inference for analyzing contingency tables in finite populations
    Dibaj, Shiva S.
    Hutson, Alan D.
    Warren, Graham W.
    Wilding, Gregory E.
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (01) : 86 - 97
  • [8] Bayesian phylogeny analysis via stochastic approximation Monte Carlo
    Cheon, Sooyoung
    Liang, Faming
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2009, 53 (02) : 394 - 403
  • [9] Stochastic approximation Monte Carlo importance sampling for approximating exact conditional probabilities
    Sooyoung Cheon
    Faming Liang
    Yuguo Chen
    Kai Yu
    Statistics and Computing, 2014, 24 : 505 - 520
  • [10] Stochastic approximation Monte Carlo importance sampling for approximating exact conditional probabilities
    Cheon, Sooyoung
    Liang, Faming
    Chen, Yuguo
    Yu, Kai
    STATISTICS AND COMPUTING, 2014, 24 (04) : 505 - 520