Machine learning for performance homogeneity of photonic chips

被引:1
|
作者
Yadav, Ksenia [1 ]
Bidnyk, Serge [1 ]
Balakrishnan, Ashok [1 ]
机构
[1] Enablence Technol Inc, 390 March Rd, Ottawa, ON K2K 0G7, Canada
来源
关键词
machine learning; artificial intelligence; waveguide; planar lightwave circuit; integrated optics;
D O I
10.1109/PN56061.2022.9908385
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The performance homogeneity of photonic chips is critical when it comes to the deployment of the technology in high volume applications. We present our research for using machine learning for optimization of the design space and prediction of optical performance of the planar lighwave circuit technology in volume manufacturing.
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Identifying topology of leaky photonic lattices with machine learning
    Smolina, Ekaterina
    Smirnov, Lev
    Leykam, Daniel
    Nori, Franco
    Smirnova, Daria
    NANOPHOTONICS, 2024, 13 (03) : 271 - 281
  • [22] Machine learning classification for field distributions of photonic modes
    Barth, Carlo
    Becker, Christiane
    COMMUNICATIONS PHYSICS, 2018, 1
  • [23] Machine Learning Assisted Management of Photonic Switching Systems
    Khan, Ihtesham
    Masood, M. Umar
    Tunesi, Lorenzo
    Bardella, Paolo
    Ghillino, Enrico
    Carena, Andrea
    Curri, Vittorio
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [24] Predictive and generative machine learning models for photonic crystals
    Christensen, Thomas
    Loh, Charlotte
    Picek, Stjepan
    Jing, Li
    Fisher, Sophie
    Ceperic, Vladimir
    Joannopoulos, John D.
    Soljacic, Marin
    Jakobovic, Domagoj
    NANOPHOTONICS, 2020, 9 (13) : 4183 - 4192
  • [25] Photonic extreme learning machine based on frequency multiplexing
    Lupo, Alessandro
    Butschek, Lorenz
    Massar, Serge
    OPTICS EXPRESS, 2021, 29 (18): : 28257 - 28276
  • [26] Photonic Kernel Machine Learning for Ultrafast Spectral Analysis
    Denis, Zakari
    Favero, Ivan
    Ciuti, Cristiano
    PHYSICAL REVIEW APPLIED, 2022, 17 (03)
  • [27] Machine learning design of subwavelengh integrated photonic devices
    Melati, Daniele
    Dezfouli, Mohsen Kamandar
    Grinberg, Yuri
    Janz, Siegfried
    Schmid, Jens H.
    Cheben, Pavel
    Xu, Dan-Xia
    2019 19TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD 2019), 2019, : 135 - 136
  • [28] Machine learning classification for field distributions of photonic modes
    Carlo Barth
    Christiane Becker
    Communications Physics, 1
  • [29] Photonic machine learning with on-chip diffractive optics
    Fu, Tingzhao
    Zang, Yubin
    Huang, Yuyao
    Du, Zhenmin
    Huang, Honghao
    Hu, Chengyang
    Chen, Minghua
    Yang, Sigang
    Chen, Hongwei
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [30] Photonic machine learning with on-chip diffractive optics
    Tingzhao Fu
    Yubin Zang
    Yuyao Huang
    Zhenmin Du
    Honghao Huang
    Chengyang Hu
    Minghua Chen
    Sigang Yang
    Hongwei Chen
    Nature Communications, 14