On the normality of topological target manifolds for Riemann-Hilbert problems

被引:0
|
作者
Wegert, E [1 ]
Semmler, G [1 ]
机构
[1] TU Bergakad Freiburg, Inst Angew Math 1, D-09596 Freiburg, Germany
来源
TOPICS IN ANALYSIS AND ITS APPLICATIONS | 2004年 / 147卷
关键词
Riemann-Hilbert problem; conformal mapping;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent years R. Belch proposed an approach for investigating nonlinear Riemann-Hilbert problems with non-smooth target manifold. His main result is a characterization of solutions to Riemann-Hilbert problems as extremal functions in certain function classes. However, a complete analogy to corresponding results for problems with smooth target manifold holds only for a subclass of the toplogical target manifolds introduced by Belch, which are called normal. The conjecture that this subclass coincides with the whole class of topological target manifolds was left unproved. In the present paper we give a (counter-)example of a topological target manifold for which the solution set of the Riemann-Hilbert problem is in some sense bigger than in the smooth case. The problem to characterize normal topological target manifolds in geometric terms arises now as a challenging question of ongoing research.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 50 条
  • [22] Lax Equations, Singularities and Riemann-Hilbert Problems
    dos Santos, Antonio F.
    dos Santos, Pedro F.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (03) : 203 - 229
  • [23] RIEMANN-HILBERT PROBLEMS OF DEGENERATE HYPERBOLIC SYSTEM
    Zhongtai Ma
    Annals of Applied Mathematics, 2010, (02) : 200 - 205
  • [24] Riemann-Hilbert problems with lots of discrete spectrum
    Miller, Peter D.
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 163 - 181
  • [25] Riemann-Hilbert problems, Toeplitz operators and ergosurfaces
    Camara, M. Cristina
    Cardoso, Gabriel Lopes
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (06):
  • [26] Riemann-Hilbert problems for multiple orthogonal polynomials
    Van Assche, W
    Geronimo, JS
    Kuijlaars, ABJ
    SPECIAL FUNCTIONS 2000: CURRENT PERSPECTIVE AND FUTURE DIRECTIONS, 2001, 30 : 23 - 59
  • [27] Factorizations, Riemann-Hilbert problems and the corona theorem
    Camara, M. C.
    Diogo, C.
    Karlovich, Yu. I.
    Spitkovsky, I. M.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 : 852 - 878
  • [28] Solving Riemann-Hilbert problems with meromorphic functions
    Kucerovsky, Dan
    Sarraf, Aydin
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (01) : 117 - 130
  • [29] Explicit Riemann-Hilbert problems in Hardy spaces
    Semmler, Gunter
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (8-9) : 1099 - 1117
  • [30] Oscillatory Riemann-Hilbert problems and the corona theorem
    Bastos, MA
    Karlovich, YI
    dos Santos, AF
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (02) : 347 - 397