Quantum tunneling of vortices in two-dimensional condensates

被引:17
|
作者
Auerbach, Assa [1 ]
Arovas, Daniel P.
Ghosh, Sankalpa
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] Okayama Univ, Dept Phys, Okayama 7008530, Japan
来源
PHYSICAL REVIEW B | 2006年 / 74卷 / 06期
关键词
D O I
10.1103/PhysRevB.74.064511
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The tunneling rate t(v)/h of a vortex between two pinning sites (of strength (V) over bar separated by d) is computed using the Bogoliubov expansion of vortex wave-functions overlap. For BCS vortices, tunneling is suppressed beyond a few Fermi wavelengths. For Bose condensates, t(v)=(V) over bar exp(-pi n(s)d(2)/2), where n(s) is the boson density. The analogy between vortex hopping in a superconducting film and two-dimensional electrons in a perpendicular magnetic field is exploited. We derive the variable range hopping temperature, below which vortex tunneling contributes to magnetoresistance. Using the "quantum Hall insulator" analogy we argue that the Hall conductivity (rather than the inverse Hall resistivity) measures the effective carrier density in domains of mobile vortices. Details of vortex wave functions and overlap calculations, and a general derivation of the Magnus coefficient for any wave function on the sphere, are provided in appendixes.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Two-dimensional nonlocal vortices, multipole solitons, and rotating multisolitons in dipolar Bose-Einstein condensates
    Lashkin, V. M.
    PHYSICAL REVIEW A, 2007, 75 (04):
  • [32] Induced tunneling and localization for a quantum particle in tilted two-dimensional lattices
    Bulgakov, Evgeny N.
    Kolovsky, Andrey R.
    PHYSICAL REVIEW B, 2014, 89 (03):
  • [33] Quantum tunneling in two-dimensional van der Waals heterostructures and devices
    Fan, Sidi
    Cao, Rui
    Wang, Lude
    Gao, Shan
    Zhang, Yupeng
    Yu, Xiang
    Zhang, Han
    SCIENCE CHINA-MATERIALS, 2021, 64 (10) : 2359 - 2387
  • [34] Two-dimensional simulation of quantum tunneling across barrier with surface roughness
    Sakai, A
    Kamakura, Y
    Taniguchi, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (12): : 8288 - 8292
  • [35] Two-Dimensional Supersolid Formation in Dipolar Condensates
    Bland, T.
    Poli, E.
    Politi, C.
    Klaus, L.
    Norcia, M. A.
    Ferlaino, F.
    Santos, L.
    Bisset, R. N.
    PHYSICAL REVIEW LETTERS, 2022, 128 (19)
  • [36] Free expansion of two-dimensional condensates with a vortex
    Hosten, O
    Vignolo, P
    Minguzzi, A
    Tanatar, B
    Tosi, MP
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2003, 36 (12) : 2455 - 2463
  • [37] Two-dimensional Bose condensates in a harmonic trap
    Tanatar, B
    LASER PHYSICS, 2002, 12 (01) : 207 - 210
  • [38] Controlled polarization of two-dimensional quantum turbulence in atomic Bose-Einstein condensates
    Cidrim, A.
    dos Santos, F. E. A.
    Galantucci, L.
    Bagnato, V. S.
    Barenghi, C. F.
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [39] Two-dimensional anisotropic vortex quantum droplets in dipolar Bose-Einstein condensates
    Li, Guilong
    Jiang, Xunda
    Liu, Bin
    Chen, Zhaopin
    Malomed, Boris A.
    Li, Yongyao
    FRONTIERS OF PHYSICS, 2024, 19 (02)
  • [40] Classical and quantum regimes of two-dimensional turbulence in trapped Bose-Einstein condensates
    Reeves, M. T.
    Anderson, B. P.
    Bradley, A. S.
    PHYSICAL REVIEW A, 2012, 86 (05)