Inertial manifolds and normal hyperbolicity

被引:27
|
作者
Rosa, R
Temam, R
机构
[1] UNIV FED RIO DE JANEIRO,IM,DEPT MATEMAT APLICADA,BR-21945 RIO JANEIRO,RJ,BRAZIL
[2] INDIANA UNIV,INST APPL MATH & SCI COMP,BLOOMINGTON,IN 47405
[3] UNIV PARIS 11,ANAL NUMER LAB,F-91405 ORSAY,FRANCE
[4] INDIANA UNIV,INST APPL MATH & SCI COMP,BLOOMINGTON,IN 47405
关键词
dynamical systems; inertial manifolds; normal hyperbolicity; nonlinear evolution equations;
D O I
10.1007/BF00047882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this article is to derive an existence theorem of inertial manifolds for fairly general equations with a self-adjoint or nonself-adjoint linear operator in a Banach space setting. A sharp form of the spectral gap condition is given. Many other properties are proven including an interesting characterization of the inertial manifold and the normal hyperbolicity of the inertial manifold.
引用
收藏
页码:1 / 50
页数:50
相关论文
共 50 条