NORMAL HYPERBOLICITY OF CENTER MANIFOLDS AND SAINTVENANT PRINCIPLE

被引:42
|
作者
MIELKE, A
机构
[1] Mathematisches Institut A, Universität Stuttgart
关键词
D O I
10.1007/BF00393272
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of normal hyperbolicity of center manifolds is generalized to infinite-dimensional differential equations, in particular, to elliptic problems in cylindrical domains. It is shown that all solutions u staying close to the center manifold for t ∈ (-l,l) satisfy an estimate of the form {Mathematical expression} where C and α are independent of l, and ũ is a solution on the center manifold. These results are applied to Saint-Venant's principle for the static deformation of nonlinearly elastic prismatic bodies. The use of the center manifold permits the effective treatment of the general case of non-zero resultant forces and moments acting on each cross-section. © 1990 Springer-Verlag.
引用
收藏
页码:353 / 372
页数:20
相关论文
共 50 条
  • [1] Inertial manifolds and normal hyperbolicity
    Rosa, R
    Temam, R
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1996, 45 (01) : 1 - 50
  • [2] Normal hyperbolicity and unbounded critical manifolds
    Kuehn, Christian
    [J]. NONLINEARITY, 2014, 27 (06) : 1351 - 1366
  • [3] REGULARITY OF CENTER MANIFOLDS UNDER NONUNIFORM HYPERBOLICITY
    Barreira, Luis
    Valls, Claudia
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (01): : 55 - 76
  • [4] ON PLATE THEORIES AND SAINTVENANT PRINCIPLE
    GREGORY, RD
    WAN, FYM
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1985, 21 (10) : 1005 - 1024
  • [5] Center manifolds for impulsive equations under nonuniform hyperbolicity
    Barreira, Luis
    Valls, Claudia
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) : 1616 - 1627
  • [6] Center manifolds under nonuniform hyperbolicity - maximal regularity
    Barreira, Luis
    Valls, Claudia
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) : 33 - 45
  • [7] Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity
    Li, Mengmeng
    Wang, JinRong
    O'Regan, Donal
    Feckan, Michal
    [J]. COMPTES RENDUS MATHEMATIQUE, 2020, 358 (03) : 341 - 364
  • [8] Horospheres and hyperbolicity of Hadamard manifolds
    Itoh, Mitsuhiro
    Satoh, Hiroyasu
    Suh, Young Jin
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 50 - 68
  • [9] Almost Complex Manifolds and Hyperbolicity
    Kobayashi S.
    [J]. Results in Mathematics, 2001, 40 (1-4) : 246 - 256
  • [10] Manifolds on the verge of a hyperbolicity breakdown
    Haro, A
    de la Llave, R
    [J]. CHAOS, 2006, 16 (01)