Cooling Atomic Gases With Disorder

被引:21
|
作者
Paiva, Thereza [1 ]
Khatami, Ehsan [2 ]
Yang, Shuxiang [3 ]
Rousseau, Valery [3 ]
Jarrell, Mark [3 ]
Moreno, Juana [3 ]
Hulet, Randall G. [4 ,5 ]
Scalettar, Richard T. [6 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Fis Solidos, Inst Fis, BR-21945970 Rio De Janeiro, Brazil
[2] San Jose State Univ, Dept Phys, San Jose, CA 95192 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[4] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[5] Rice Univ, Rice Quantum Inst, Houston, TX 77005 USA
[6] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
HUBBARD-MODEL; OPTICAL LATTICE; ANDERSON LOCALIZATION; INTERACTING FERMIONS; SYSTEMS; INSULATOR; DIMENSIONS; TRANSITION; MATTER; PHASE;
D O I
10.1103/PhysRevLett.115.240402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Neel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Coherence and superfluidity in atomic gases
    Tosi, MP
    [J]. QUANTUM COMMUNICATION AND INFORMATION TECHNOLOGIES, 2003, 113 : 299 - 328
  • [32] Dressed dense atomic gases
    Lesanovsky, Igor
    Olmos, Beatriz
    Guerin, William
    Kaiser, Robin
    [J]. PHYSICAL REVIEW A, 2019, 100 (02)
  • [33] The atomic energy of gases.
    Crompton, H
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE--STOCHIOMETRIE UND VERWANDTSCHAFTSLEHRE, 1907, 59 (05): : 635 - 637
  • [34] Superfluidity in atomic Fermi gases
    Yu, Yi
    Chen, Qijin
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 : S900 - S903
  • [35] Atomic energy of gases.
    Ensrud, G
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE--STOCHIOMETRIE UND VERWANDTSCHAFTSLEHRE, 1907, 58 (03): : 257 - 287
  • [36] Analysis of the operation of cooling towers for the complete cooling of coke gases
    Donetskij Gosudarstvennyj, Tekhnicheskij Univ, Donetsk, Ukraine
    [J]. Koks i Khimiya, 1996, (04): : 39 - 40
  • [37] Increasing temperature of cooling granular gases
    Brilliantov, Nikolai V.
    Formella, Arno
    Poeschel, Thorsten
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [38] Laser cooling of trapped Fermi gases
    Idziaszek, Z
    Santos, L
    Baranov, M
    Lewenstein, M
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (02) : S190 - S198
  • [39] COMPRESSION OF GASES WITH HIGH PREVIOUS COOLING
    ROMA, C
    [J]. REVUE GENERALE DE THERMIQUE, 1967, 6 (61): : 39 - &
  • [40] Positron Cooling and Annihilation in Noble Gases
    Green, D. G.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (20)