Cooling Atomic Gases With Disorder

被引:21
|
作者
Paiva, Thereza [1 ]
Khatami, Ehsan [2 ]
Yang, Shuxiang [3 ]
Rousseau, Valery [3 ]
Jarrell, Mark [3 ]
Moreno, Juana [3 ]
Hulet, Randall G. [4 ,5 ]
Scalettar, Richard T. [6 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Fis Solidos, Inst Fis, BR-21945970 Rio De Janeiro, Brazil
[2] San Jose State Univ, Dept Phys, San Jose, CA 95192 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[4] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[5] Rice Univ, Rice Quantum Inst, Houston, TX 77005 USA
[6] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
HUBBARD-MODEL; OPTICAL LATTICE; ANDERSON LOCALIZATION; INTERACTING FERMIONS; SYSTEMS; INSULATOR; DIMENSIONS; TRANSITION; MATTER; PHASE;
D O I
10.1103/PhysRevLett.115.240402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Neel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Cooling and thermometry of atomic Fermi gases
    Onofrio, R.
    [J]. PHYSICS-USPEKHI, 2016, 59 (11) : 1129 - 1153
  • [2] Laser Cooling: Chilling dense atomic gases
    Sheik-Bahae, Mansoor
    Seletskiy, Denis
    [J]. NATURE PHOTONICS, 2009, 3 (12) : 680 - 681
  • [3] Thermoelectric transport and Peltier cooling of cold atomic gases
    Grenier, Charles
    Kollath, Corinna
    Georges, Antoine
    [J]. COMPTES RENDUS PHYSIQUE, 2016, 17 (10) : 1161 - 1174
  • [4] Effective microscopic models for sympathetic cooling of atomic gases
    Onofrio, Roberto
    Sundaram, Bala
    [J]. PHYSICAL REVIEW A, 2015, 92 (03):
  • [5] ANTICOOL: Simulating positron cooling and annihilation in atomic gases
    Green, D. G.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2018, 224 : 362 - 370
  • [6] Cold atomic gases in optical lattices with disorder
    Schulte, T
    Drenkelforth, S
    Kruse, J
    Ertmer, W
    Arlt, JJ
    Kantian, A
    Sanchez-Palencia, L
    Santos, L
    Sanpera, A
    Sacha, K
    Zoller, P
    Lewenstein, M
    Zakrzewski, J
    [J]. ACTA PHYSICA POLONICA A, 2006, 109 (01) : 89 - 99
  • [7] Density correlations in cold atomic gases: Atomic speckles in the presence of disorder
    Henseler, Peter
    Shapiro, Boris
    [J]. PHYSICAL REVIEW A, 2008, 77 (03):
  • [8] Spectroscopy and thermalization of dense atomic gases in redistributional laser cooling
    Christopoulos, Stavros
    Weller, Lars
    Moroshkin, Peter
    Moeller, Dominik
    Weitz, Martin
    [J]. OPTICAL AND ELECTRONIC COOLING OF SOLIDS, 2016, 9765
  • [9] KINETIC-THEORY FOR COOLING OF ATOMIC GASES BY ELECTROMAGNETIC RESONANCE RADIATION
    KLIMONTOVICH, YL
    LUZGIN, SN
    [J]. ZHURNAL TEKHNICHESKOI FIZIKI, 1978, 48 (11): : 2217 - 2222
  • [10] POSSIBILITY OF FAST DEEP COOLING OF ATOMIC OR MOLECULAR GASES BY LASER-RADIATION
    LETOKHOV, VS
    [J]. APPLIED PHYSICS, 1981, 24 (02): : 119 - 120