T-Hoarder: A framework to process Twitter data streams

被引:59
|
作者
Congosto, Mariluz [1 ,4 ]
Basanta-Val, Pablo [1 ,2 ,3 ]
Sanchez-Fernandez, Luis [1 ,2 ,3 ]
机构
[1] Dept Ingn Telemat, Web Technol Lab, Madrid, Spain
[2] Univ Carlos III Madrid, Dept Ingn Telemat, E-28903 Getafe, Spain
[3] Univ Carlos III Madrid, Inst Financial Big Data, BS UC3M, E-28903 Getafe, Spain
[4] Dept Ingn Telemat, Edificio Torres Quevedo,Ave Univ 30, Madrid, Spain
关键词
Twitter; Micro-blogging; Twitter analytics; Visualization;
D O I
10.1016/j.jnca.2017.01.029
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the eruption of online social networks, like Twitter and Facebook, a series of new APIs have appeared to allow access to the data that these new sources of information accumulate. One of most popular online social networks is the micro-blogging site Twitter. Its APIs allow many machines to access the torrent simultaneously to Twitter data, listening to tweets and accessing other useful information such as user profiles. A number of tools have appeared for processing Twitter data with different algorithms and for different purposes. In this paper T-Hoarder is described: a framework that enables tweet crawling, data filtering, and which is also able to display summarized and analytical information about the Twitter activity with respect to a certain topic or event in a web-page. This information is updated on a daily basis. The tool has been validated with real use-cases that allow making a series of analysis on the performance one may expect from this type of infrastructure.
引用
收藏
页码:28 / 39
页数:12
相关论文
共 50 条
  • [1] A Framework for Fast-Feedback Opinion Mining on Twitter Data Streams
    Selvan, Lokmanyathilak Govindan Sankar
    Moh, Teng-Sheng
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COLLABORATION TECHNOLOGIES AND SYSTEMS, 2015, : 314 - 318
  • [2] Analyzing the Quality of Twitter Data Streams
    Arolfo, Franco
    Rodriguez, Kevin Cortes
    Vaisman, Alejandro
    [J]. INFORMATION SYSTEMS FRONTIERS, 2022, 24 (01) : 349 - 369
  • [3] Analyzing the Quality of Twitter Data Streams
    Franco Arolfo
    Kevin Cortés Rodriguez
    Alejandro Vaisman
    [J]. Information Systems Frontiers, 2022, 24 : 349 - 369
  • [4] An Anomaly Detection Framework for Twitter Data
    Kumar, Sandeep
    Khan, Muhammad Badruddin
    Abul Hasanat, Mozaherul Hoque
    Saudagar, Abdul Khader Jilani
    AlTameem, Abdullah
    AlKhathami, Mohammed
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [5] TwiFly: A Data Analysis Framework for Twitter
    Chatziadam, Panagiotis
    Dimitriadis, Aftantil
    Gikas, Stefanos
    Logothetis, Ilias
    Michalodimitrakis, Manolis
    Neratzoulakis, Manolis
    Papadakis, Alexandros
    Kontoulis, Vasileios
    Siganos, Nikolaos
    Theodoropoulos, Dimitrios
    Vougioukalos, Giannis
    Hatzakis, Ilias
    Gerakis, George
    Papadakis, Nikolaos
    Kondylakis, Haridimos
    [J]. INFORMATION, 2020, 11 (05)
  • [6] Real Time Sentiment Change Detection of Twitter Data Streams
    Tasoulis, Sotiris K.
    Vrahatis, Aristidis G.
    Georgakopoulos, Spiros V.
    Plagianakos, Vassilis P.
    [J]. 2018 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2018,
  • [7] Pervasive Utilization of PSO Techniques Over Twitter Data Streams
    Kumar, Senthil N.
    Ahmed, Kauser P.
    [J]. RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2016, 7 (05): : 796 - 803
  • [8] Detection of suicide-related posts in Twitter data streams
    Vioules, M. Johnson
    Moulahi, B.
    Aze, J.
    Bringay, S.
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2018, 62 (01)
  • [9] Twitter Streams Fuel Big Data Approaches to Health Forecasting
    Kuehn, Bridget M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 314 (19): : 2010 - 2012
  • [10] Automatic emotion detection in text streams by analyzing Twitter data
    Hasan, Maryam
    Rundensteiner, Elke
    Agu, Emmanuel
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 7 (01) : 35 - 51