TwiFly: A Data Analysis Framework for Twitter

被引:3
|
作者
Chatziadam, Panagiotis [1 ]
Dimitriadis, Aftantil [1 ]
Gikas, Stefanos [1 ]
Logothetis, Ilias [1 ]
Michalodimitrakis, Manolis [1 ]
Neratzoulakis, Manolis [1 ]
Papadakis, Alexandros [1 ]
Kontoulis, Vasileios [1 ]
Siganos, Nikolaos [1 ]
Theodoropoulos, Dimitrios [1 ]
Vougioukalos, Giannis [1 ]
Hatzakis, Ilias [2 ]
Gerakis, George [1 ]
Papadakis, Nikolaos [1 ]
Kondylakis, Haridimos [1 ,3 ]
机构
[1] Hellen Mediterranean Univ, Dept Elect & Comp Engn, GR-70013 Iraklion, Greece
[2] Hellen Mediterranean Univ, Dept Agr, GR-70013 Iraklion, Greece
[3] FORTH ICS, GR-70013 Iraklion, Greece
关键词
Twitter; political analysis; data analysis; EVENT DETECTION; TOOL;
D O I
10.3390/info11050247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over the last decade, there have been many changes in the field of political analysis at a global level. Through social networking platforms, millions of people have the opportunity to express their opinion and capture their thoughts at any time, leaving their digital footprint. As such, massive datasets are now available, which can be used by analysts to gain useful insights on the current political climate and identify political tendencies. In this paper, we present TwiFly, a framework built for analyzing Twitter data. TwiFly accepts a number of accounts to be monitored for a specific time-frame and visualizes in real time useful extracted information. As a proof of concept, we present the application of our platform to the most recent elections of Greece, gaining useful insights on the election results.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A FRAMEWORK FOR MASSIVE TWITTER DATA EXTRACTION AND ANALYSIS
    AlvaroCuesta
    Barrero, David F.
    R-Moreno, Maria D.
    [J]. MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2014, 27 (01) : 50 - 67
  • [2] HiSAT: Hierarchical Framework for Sentiment Analysis on Twitter Data
    Kommu, Amrutha
    Patel, Snehal
    Derosa, Sebastian
    Wang, Jiayin
    Varde, Aparna S.
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2023, 542 : 376 - 392
  • [3] A framework for real-time Twitter data analysis
    Gaglio, Salvatore
    Lo Re, Giuseppe
    Morana, Marco
    [J]. COMPUTER COMMUNICATIONS, 2016, 73 : 236 - 242
  • [4] Sentiment Analysis Framework of Twitter Data Using Classification
    Khurana, Medha
    Gulati, Anurag
    Singh, Saurabh
    [J]. 2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 459 - 464
  • [5] Sentiment Analysis on Twitter Data using Apache Spark Framework
    Elzayady, Hossam
    Badran, Khaled M.
    Salama, Gouda I.
    [J]. PROCEEDINGS OF 2018 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2018, : 171 - 176
  • [6] An Anomaly Detection Framework for Twitter Data
    Kumar, Sandeep
    Khan, Muhammad Badruddin
    Abul Hasanat, Mozaherul Hoque
    Saudagar, Abdul Khader Jilani
    AlTameem, Abdullah
    AlKhathami, Mohammed
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [7] Sentiment Analysis of Big Data Applications using Twitter Data with the Help of HADOOP Framework
    Sehgal, Divya
    Agarwal, Ambuj Kumar
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART-2016), 2016, : 251 - 255
  • [8] DATA ANALYSIS OF TWITTER DATA
    Kasprikova, Nikola
    [J]. 13TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2019, : 678 - 686
  • [9] A framework for intelligent Twitter data analysis with non-negative matrix factorization
    Casalino, Gabriella
    Castiello, Ciro
    Del Buono, Nicoletta
    Mencar, Corrado
    [J]. INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2018, 14 (03) : 334 - 356
  • [10] A polarity analysis framework for Twitter messages
    Lima, Ana Carolina E. S.
    de Castro, Leandro Nunes
    Corchado, Juan M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 756 - 767