Resonant tori of arbitrary codimension for quasi-periodically forced systems

被引:18
|
作者
Corsi, Livia [1 ]
Gentile, Guido [2 ]
机构
[1] Georgia Inst Technol, Sch Math, 686 Cherry St NW, Atlanta, GA 30332 USA
[2] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
基金
欧洲研究理事会;
关键词
INTEGRABLE HAMILTONIAN-SYSTEMS; LOWER-DIMENSIONAL TORI; INVARIANT TORI; KAM THEOREM;
D O I
10.1007/s00030-016-0425-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of rotators subject to a small quasi periodic forcing. We require the forcing to be analytic and satisfy a time reversibility property and we assume its frequency vector to be Bryuno. Then we prove that, without imposing any non-degeneracy condition on the forcing, there exists at least one quasi-periodic solution with the same frequency vector as the forcing. The result can be interpreted as a theorem of persistence of lower-dimensional tori of arbitrary codimension in degenerate cases.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] RESPONSE SOLUTIONS FOR QUASI-PERIODICALLY FORCED HARMONIC OSCILLATORS
    Wang, Jing
    You, Jiangong
    Zhou, Qi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) : 4251 - 4274
  • [22] Transitive sets for quasi-periodically forced monotone maps
    Stark, J
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2003, 18 (04): : 351 - 364
  • [23] Reducibility and nonlinear stability for a quasi-periodically forced NLS
    Haus, E.
    Langella, B.
    Maspero, A.
    Procesi, M.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (03) : 1313 - 1370
  • [24] OSCILLATIONS OF A QUASI-PERIODICALLY FORCED SYSTEM WITH DRY FRICTION
    WOJEWODA, J
    KAPITANIAK, T
    JOURNAL OF SOUND AND VIBRATION, 1993, 163 (02) : 379 - 384
  • [25] Quasi-Periodically Driven Quantum Systems
    Verdeny, Albert
    Puig, Joaquim
    Mintert, Florian
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (10): : 897 - 907
  • [26] INVARIANT TORI OF A NONLINEAR SCHRODINGER EQUATION WITH QUASI-PERIODICALLY UNBOUNDED PERTURBATIONS
    Liu, Jie
    Si, Jianguo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (01) : 25 - 68
  • [27] Quasi-periodically Forced Logistic Map with Weak Liouvillean Frequency
    Jin Hao LIANG
    Lin Lin FU
    Acta Mathematica Sinica,English Series, 2024, (10) : 2411 - 2435
  • [28] Quasi-periodically Forced Logistic Map with Weak Liouvillean Frequency
    Liang, Jin Hao
    Fu, Lin Lin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (10) : 2411 - 2435
  • [29] STRANGE NONCHAOTIC ATTRACTOR IN A QUASI-PERIODICALLY FORCED CIRCLE MAP
    FEUDEL, U
    KURTHS, J
    PIKOVSKY, AS
    PHYSICA D, 1995, 88 (3-4): : 176 - 186
  • [30] Stoker's Problem for Quasi-periodically Forced Reversible Systems with Multidimensional Liouvillean Frequency
    Xu, Xiaodan
    Si, Wen
    Si, Jianguo
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (04): : 2286 - 2321