Cardinality constrained submodular maximization for random streams

被引:0
|
作者
Liu, Paul [1 ]
Rubinstein, Aviad [1 ]
Vondrak, Jan [2 ]
Zhao, Junyao [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
加拿大自然科学与工程研究理事会;
关键词
THRESHOLD;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of maximizing submodular functions in single-pass streaming and secretaries-with-shortlists models, both with random arrival order. For cardinality constrained monotone functions, Agrawal, Shadravan, and Stein [ASS19] gave a single-pass (1-1/is an element of-epsilon)-approximation algorithm using only linear memory, but their exponential dependence on " makes it impractical even for epsilon = 0:1. We simplify both the algorithm and the analysis, obtaining an exponential improvement in the epsilon-dependence (in particular, O(k/epsilon) memory). Extending these techniques, we also give a simple (1/e-epsilon)-approximation for non-monotone functions in O(k/epsilon) memory. For the monotone case, we also give a corresponding unconditional hardness barrier of 1-1/e + epsilon for single-pass algorithms in randomly ordered streams, even assuming unlimited computation. Finally, we show that the algorithms are simple to implement and work well on real world datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Constrained Submodular Maximization via New Bounds for DR-Submodular Functions
    Buchbinder, Niv
    Feldman, Moran
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1820 - 1831
  • [22] Adaptive Sampling for Fast Constrained Maximization of Submodular Functions
    Quinzan, Francesco
    Doskoc, Vanja
    Goebel, Andreas
    Friedrich, Tobias
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [23] Fast Constrained Submodular Maximization: Personalized Data Summarization
    Mirzasoleiman, Baharan
    Badanidiyuru, Ashwinkumar
    Karbasi, Amin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [24] Constrained submodular maximization via greedy local search
    Sarpatwar, Kanthi K.
    Schieber, Baruch
    Shachnai, Hadas
    OPERATIONS RESEARCH LETTERS, 2019, 47 (01) : 1 - 6
  • [25] Weakly Submodular Maximization Beyond Cardinality Constraints: Does Randomization Help Greedy?
    Chen, Lin
    Feldman, Moran
    Karbasi, Amin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [26] Submodular maximization over data streams with differential privacy noise
    Guo, Longkun
    Liao, Kewen
    Xiao, Di
    Yao, Pei
    THEORETICAL COMPUTER SCIENCE, 2023, 944
  • [27] Analyzing Residual Random Greedy for monotone submodular maximization
    Berczi, Kristof
    Chandrasekaran, Karthekeyan
    Kiraly, Tamas
    Pillai, Aditya
    INFORMATION PROCESSING LETTERS, 2023, 180
  • [28] Approximation guarantees for parallelized maximization of monotone non-submodular function with a cardinality constraint
    Min Cui
    Dachuan Xu
    Longkun Guo
    Dan Wu
    Journal of Combinatorial Optimization, 2022, 43 : 1671 - 1690
  • [29] Distributed Online Submodular Maximization in Resource- Constrained Networks
    Clark, Andrew
    Alomair, Basel
    Bushnell, Linda
    Poovendran, Radha
    2014 12TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2014, : 397 - 404
  • [30] Streaming Algorithms for Maximization of a Non-submodular Function with a Cardinality Constraint on the Integer Lattice
    Tan, Jingjing
    Sun, Yue
    Xu, Yicheng
    Zou, Juan
    PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT 2021, 2022, 13148 : 460 - 465