ON THE STABILITY OF MINDLIN-TIMOSHENKO PLATES

被引:28
|
作者
Sare, Hugo D. Fernandez [1 ]
机构
[1] Univ Konstanz, Dept Math & Stat, D-78457 Constance, Germany
关键词
Timoshenko plates; non-exponential stability; polynomial stability;
D O I
10.1090/S0033-569X-09-01110-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Mindlin-Timoshenko model with frictional dissipations acting on the equations for the rotation angles. We prove that this system is not exponentially stable independent of any relations between the constants of the system, which is different from the analogous one-dimensional case. Moreover, we show that the solution decays polynomially to zero, with rates that can be improved depending on the regularity of the initial data.
引用
收藏
页码:249 / 263
页数:15
相关论文
共 50 条
  • [21] On the dissipative effect of a magnetic field in a Mindlin-Timoshenko plate model
    Marié Grobbelaar-Van Dalsen
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 1047 - 1065
  • [22] Nonexistence of Global Solutions for Semilinear Mindlin-Timoshenko Beam Equations
    Wang, Yan
    Zhu, Chengke
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY, 2019, 1168
  • [23] On the dissipative effect of a magnetic field in a Mindlin-Timoshenko plate model
    Grobbelaar-Van Dalsen, Marie
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (06): : 1047 - 1065
  • [24] Dynamic contact of a thermoelastic Mindlin-Timoshenko beam with a rigid obstacle
    Bock, Igor
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2018, 23 (03) : 411 - 419
  • [25] Nonlinear damping effects for the 2D Mindlin-Timoshenko system
    Bchatnia, Ahmed
    Chebbi, Sabrine
    Hamouda, Makram
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2024,
  • [26] ON ASYMPTOTIC BEHAVIOUR OF THE NONLINEAR VISCOELASTIC MINDLIN-TIMOSHENKO THIN PLATE MODEL
    Pancza, David
    [J]. APLIMAT 2009: 8TH INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, : 207 - 215
  • [27] Recovering density for the Mindlin-Timoshenko system by means of a single boundary measurement
    Kurz, Jason
    Liu, Shitao
    Pei, Pei
    [J]. APPLICABLE ANALYSIS, 2022, 101 (05) : 1682 - 1698
  • [28] Approximate boundary conditions for a Mindlin-Timoshenko plate surrounded by a thin layer
    Madjour, Farida
    Rahmani, Leila
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2024, 145 (01)
  • [29] Correction to: On the dissipative effect of a magnetic field in a Mindlin-Timoshenko plate model
    Marié Grobbelaar-Van Dalsen
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [30] Stability of weakly dissipative Reissner-Mindlin-Timoshenko plates: A sharp result
    Campelo, A. D. S.
    Almeida Junior, D. S.
    Santos, M. L.
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2018, 29 (02) : 226 - 252