Modeling and quantification of available potassium spatial uncertainty in the soil by stochastic simulations

被引:3
|
作者
de Oliveira, Ismenia Ribeiro [1 ]
Teixeira, Daniel De Bortoli [2 ]
Panosso, Alan Rodrigo [3 ]
Marques Junior, Jose [2 ]
Pereira, Gener Tadeu [2 ]
机构
[1] Univ Fed Maranhao, Ctr Ciencias Agr & Ambientais, BR-65500000 Chapadinha, MA, Brazil
[2] Univ Estadual Paulista Unesp, Fac Ciencias Agr & Vet, BR-14884900 Jaboticabal, SP, Brazil
[3] UNESP, Fac Engn Ilha Solteira, BR-15385000 Ilha Solteira, SP, Brazil
关键词
soil fertility; geostatistics; kriging; sequential Gaussian simulation; sequential indicator simulation; spatial variability; SEQUENTIAL INDICATOR SIMULATION; CO2; EMISSIONS; VARIABILITY; PATTERNS; GEOSTATISTICS; ATTRIBUTES; PHOSPHORUS; ACCURACY;
D O I
10.1590/S0100-204X2014000900007
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The objective of this work was to evaluate the performance of the sequential Gaussian simulation (SGS) and the sequential indicator simulation (SIS) for modeling the uncertainty of available K predictions in a sugarcane area, and to compare both simulations to the already established method of ordinary kriging (OK). A sampling grid with 626 points was installed in an area of 200 ha, in the municipality of Tabapua, in the state of Sao Paulo, Brazil. The simulations reproduced the variability in the available K sample data, whereas OK overestimated the low K levels and underestimated the high ones. The standard deviation map obtained from OK showed less variation along the studied area when compared to the maps obtained from the simulations. SIS achieved an accuracy 22% higher than that obtained by SGS for modeling the conditional distribution function of K. The simulations have higher efficiency than OK for modeling the uncertainty in the spatial distribution of K. SIS has better performance than SGS for estimating the levels of available K in sugarcane area.
引用
收藏
页码:708 / 718
页数:11
相关论文
共 50 条
  • [31] Soil available water capacity interpolation and spatial uncertainty modelling at multiple geographical extents
    Poggio, Laura
    Gimona, Alessandro
    Brown, Iain
    Castellazzi, Marie
    GEODERMA, 2010, 160 (02) : 175 - 188
  • [32] Efficient and accurate uncertainty quantification in engineering simulations using time-separated stochastic mechanics
    Geisler, Hendrik
    Junker, Philipp
    ARCHIVE OF APPLIED MECHANICS, 2024, 94 (09) : 2603 - 2617
  • [33] Modelling spatial uncertainty of soil erodibility factor using joint stochastic simulation
    Castrignano, A.
    Buttafuoco, G.
    Canu, A.
    Zucca, C.
    Madrau, S.
    LAND DEGRADATION & DEVELOPMENT, 2008, 19 (02) : 198 - 213
  • [34] Uncertainty Quantification in Materials Modeling
    Dienstfrey, Andrew
    Phelan, Frederick R., Jr.
    Christensen, Stephen
    Strachan, Alejandro
    Santosa, Fadil
    Boisvert, Ronald
    JOM, 2014, 66 (07) : 1342 - 1344
  • [35] Uncertainty Quantification in Chemical Modeling
    Mirzayeva, A.
    Slavinskaya, N. A.
    Abbasi, M.
    Starcke, J. H.
    Li, W.
    Frenklach, M.
    EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL, 2018, 20 (01) : 33 - 43
  • [36] Soil Electrical Resistivity for Spatial Sampling Design, Prediction, and Uncertainty Modeling of Soil Moisture
    Calamita, G.
    Perrone, A.
    Brocca, L.
    Straface, S.
    VADOSE ZONE JOURNAL, 2017, 16 (10)
  • [37] Uncertainty Quantification in Materials Modeling
    Andrew Dienstfrey
    Frederick R. Phelan
    Stephen Christensen
    Alejandro Strachan
    Fadil Santosa
    Ronald Boisvert
    JOM, 2014, 66 : 1342 - 1344
  • [38] Uncertainty quantification of dynamic earthquake rupture simulations
    Daub, Eric G.
    Arabnejad, Hamid
    Mahmood, Imran
    Groen, Derek
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2197):
  • [39] Uncertainty Quantification (UQ) in generic MonteCarlo simulations
    Saracco, P.
    Batie, M.
    Hoff, G.
    Pia, M. G.
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 651 - 656
  • [40] Uncertainty quantification of shock–bubble interaction simulations
    J. Jin
    X. Deng
    Y. Abe
    F. Xiao
    Shock Waves, 2019, 29 : 1191 - 1204