Noise reduction of fast, repetitive GC/MS measurements using principal component analysis (PCA)

被引:38
|
作者
Statheropoulos, M
Pappa, A
Karamertzanis, P
Meuzelaar, HLC
机构
[1] Natl Tech Univ Athens, Dept Chem Engn, Sector 1, GR-15773 Athens, Greece
[2] Univ Utah, Ctr Micro Anal & React Chem, Salt Lake City, UT USA
关键词
noise reduction; principal component analysis (PCA); roving gas chromatography/mass spectrometry (GC/MS);
D O I
10.1016/S0003-2670(99)00494-8
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Principal component analysis (PCA) was applied to the noise reduction of low ppb level benzene, toluene, ethyl benzene, xylene (BTEX) type sas chromatography/mass spectrometry (GC/MS) measurements (i,e, BTEX) with a fast, repetitive GC/MS system. The first three principal components (PCs) accounting for approximately 60-80% of the total variance in the original data could be attributed to chemical components, whilst the remaining PCs were found to be due to noise. Reconstruction of the data from the first three PCs resulted in noise reduction with improved signal fidelity, The results of PCA were comparable with those achieved by a Fourier transform method. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 50 条
  • [21] Geographical origin identification of propolis using GC-MS and electronic nose combined with principal component analysis
    Cheng, H.
    Qin, Z. H.
    Guo, X. F.
    Hu, X. S.
    Wu, J. H.
    FOOD RESEARCH INTERNATIONAL, 2013, 51 (02) : 813 - 822
  • [22] Noise Reduction and Brain Mapping based Robust Principal Component Analysis
    Turnip, Arjon
    2015 IEEE 12th International Conference on Networking, Sensing and Control (ICNSC), 2015, : 550 - 553
  • [23] Robust principal component analysis using facial reduction
    Shiqian Ma
    Fei Wang
    Linchuan Wei
    Henry Wolkowicz
    Optimization and Engineering, 2020, 21 : 1195 - 1219
  • [24] Robust principal component analysis using facial reduction
    Ma, Shiqian
    Wang, Fei
    Wei, Linchuan
    Wolkowicz, Henry
    OPTIMIZATION AND ENGINEERING, 2020, 21 (03) : 1195 - 1219
  • [25] A novel online structure damage identification using principal component analysis (PCA)
    Hong, Soonyoung
    Shen, M. -H. Herman
    Proceedings of the ASME Power Conference 2007, 2007, : 367 - 374
  • [26] Analysis of noise reduction using independent component analysis
    Nakai, T
    Muraki, S
    Matsuo, K
    Kato, C
    Glover, G
    Moriya, T
    NEUROIMAGE, 2001, 13 (06) : S33 - S33
  • [27] Real Time Facial Recognition Using Principal Component Analysis (PCA) And EmguCV
    Sultoni, S.
    Abdullah, A. G.
    INTERNATIONAL SYMPOSIUM ON MATERIALS AND ELECTRICAL ENGINEERING (ISMEE) 2017, 2018, 384
  • [28] Pattern characteristics of Indian monsoon rainfall using principal component analysis (PCA)
    Singh, CV
    ATMOSPHERIC RESEARCH, 2006, 79 (3-4) : 317 - 326
  • [29] Colostrum immune composition and immunological outcomes using principal component analysis (PCA)
    Munblit, D.
    Treneva, M.
    Peroni, D.
    Colicino, S.
    Chow, L-Y
    Dissanayeke, S.
    Pampura, A.
    Boyle, R. J.
    Warner, J. O.
    ALLERGY, 2015, 70 : 111 - 111
  • [30] Damage Classification in CFRP Laminates using Principal Component Analysis (PCA) Approach
    Sultan, M. T. H.
    Rafie, A. S. M.
    Yidris, N.
    Mustapha, F.
    Majid, D. L.
    AEROTECH IV: RECENT ADVANCES IN AEROSPACE TECHNOLOGIES, 2012, 225 : 189 - 194