A NUMERICAL METHOD FOR TRANSPORT EQUATIONS WITH DISCONTINUOUS FLUX FUNCTIONS: APPLICATION TO MATHEMATICAL MODELING OF CELL DYNAMICS

被引:7
|
作者
Aymard, Benjamin [1 ,2 ]
Clement, Frederique [2 ]
Coquel, Frederic [3 ,4 ]
Postel, Marie [1 ,5 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
[2] Ctr Rech Inria Paris Rocquencourt, F-78153 Le Chesnay, France
[3] Ecole Polytech, CNRS, F-91128 Palaiseau, France
[4] Ecole Polytech, CMAP, UMR 7641, F-91128 Palaiseau, France
[5] CNRS, UMR 7598, F-75005 Paris, France
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 06期
关键词
kinetic equations; finite volumes; discontinuous coefficients; cell dynamics; CONSERVATION-LAWS; APPROXIMATION;
D O I
10.1137/120904238
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose a numerical method to handle discontinuous fluxes arising in transport-like equations. More precisely, we study hyperbolic PDEs with flux transmission conditions at interfaces between subdomains where coefficients are discontinuous. A dedicated finite volume scheme with a limited high order enhancement is adapted to treat the discontinuities arising at interfaces. The validation of the method is done on one-and two-dimensional toy problems for which exact solutions are available, allowing us to do a thorough convergence study. We then apply the method to a biological model focusing on complex cell dynamics that initially motivated this study and illustrates the full potentialities of the scheme.
引用
收藏
页码:A2442 / A2468
页数:27
相关论文
共 50 条
  • [31] Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method
    Krasnov, M. M.
    Kuchugov, P. A.
    Ladonkina, M. E.
    Lutsky, A. E.
    Tishkin, V. F.
    10TH INTERNATIONAL CONFERENCE ON AEROPHYSICS AND PHYSICAL MECHANICS OF CLASSICAL AND QUANTUM SYSTEMS, 2017, 815
  • [32] Numerical rate function determination in partial differential equations modeling cell population dynamics
    Groh, Andreas
    Kohr, Holger
    Louis, Alfred K.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (03) : 533 - 565
  • [33] On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations
    Dolejsí, V
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 45 (10) : 1083 - 1106
  • [34] Mathematical Modeling and Control of the Cell Dynamics in Leprosy
    Ghosh S.
    Chatterjee A.N.
    Roy P.K.
    Grigorenko N.
    Khailov E.
    Grigorieva E.
    Computational Mathematics and Modeling, 2021, 32 (1) : 52 - 74
  • [35] Discontinuous Galerkin method for the numerical solution of Euler equations in axisymmetric geometry
    Despres, B
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 315 - 320
  • [36] Numerical solution of the Euler equations with a multiorder discontinuous finite element method
    Bassi, F
    Rebay, S
    COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 199 - 204
  • [37] Convergence of a numerical method for solving discontinuous Fokker-Planck equations
    Wang, Hongyun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) : 1425 - 1452
  • [38] Discontinuous finite element method for neutron transport equations on no matching mesh
    Wei, Jun-Xia
    Yang, Shu-Lin
    Wang, Shuang-Hu
    Shen, Wei-Dong
    Hedongli Gongcheng/Nuclear Power Engineering, 2010, 31 (SUPPL. 2): : 25 - 28
  • [40] LAGRANGEAN GAS-DYNAMICS - GODUNOV-TYPE SCHEMES AND DISCONTINUOUS FLUX FUNCTIONS
    GOZ, MF
    MUNZ, CD
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (05): : T380 - T382