Polymer waveguide couplers based on metal nanoparticle-polymer nanocomposites

被引:12
|
作者
Signoretto, M. [1 ]
Suarez, I. [1 ]
Chirvony, V. S. [1 ]
Abargues, R. [2 ]
Rodriguez-Canto, P. J. [2 ]
Martinez-Pastor, J. [1 ]
机构
[1] Univ Valencia, Inst Ciencia Mat, UMDO Unidad Asociada CSIC IMM, Valencia 46007, Spain
[2] Intenanomat SL, Paterna 46980, Spain
关键词
scattering; waveguide; metal nanoparticle; polymer; GOLD NANOPARTICLES; REFRACTIVE-INDEX; LIGHT; MODES; SHAPE; SIZE; ABSORPTION; CHAIN;
D O I
10.1088/0957-4484/26/47/475201
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work Au nanoparticles (AuNPs) are incorporated into poly(methyl methacrylate) (PMMA) waveguides to develop optical couplers that are compatible with planar organic polymer photonics. A method for growing AuNPs (of 10 to 100 nm in size) inside the commercially available Novolak resist is proposed with the intention of tuning the plasmon resonance and the absorption/scattering efficiencies inside the patterned structures. The refractive index of the MNP-Novolak nanocomposite (MNPs: noble metal nanoparticles) is carefully analysed both experimentally and numerically in order to find the appropriate fabrication conditions (filling factor and growth time) to optimize the scattering cross section at a desired wavelength. Then the nanocomposite is patterned inside a PMMA waveguide to exploit its scattering properties to couple and guide a normal incident laser light beam along the polymer. In this way, light coupling is experimentally demonstrated in a broad wavelength range (404-780 nm). Due to the elliptical shape of the MNPs the nanocomposite demonstrates a birefringence, which enhances the coupling to the TE mode up to efficiencies of around 1%.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Viscoelastic analysis of silica nanoparticle-polymer nanocomposites
    Shi, Xiaolong
    Hassanzadeh-Aghdam, M. K.
    Ansari, R.
    COMPOSITES PART B-ENGINEERING, 2019, 158 : 169 - 178
  • [2] Two-Stage Electrical Percolation of Metal Nanoparticle-Polymer Nanocomposites
    Wang, Guotong
    Wang, Chengyuan
    Tang, Chun
    Zhang, Faling
    Sun, Tiger
    Yu, Xiaozhu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (15): : 8614 - 8620
  • [3] Nanoparticle-polymer photovoltaic cells
    Saunders, Brian R.
    Turner, Michael L.
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2008, 138 (01) : 1 - 23
  • [4] Routes to Nanoparticle-Polymer Superlattices
    Taheri, Sara Mehdizadeh
    Fischer, Steffen
    Foerster, Stephan
    POLYMERS, 2011, 3 (02) : 662 - 673
  • [5] Metal nanoparticle - conjugated polymer nanocomposites
    Sih, BC
    Wolf, MO
    CHEMICAL COMMUNICATIONS, 2005, (27) : 3375 - 3384
  • [6] Crowding of polymer coils and demixing in nanoparticle-polymer mixtures
    Lu, Ben
    Denton, Alan R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (28)
  • [7] NMR-based characterization of nanoparticle-polymer interactions
    Hamers, Robert
    Zhang, Yongqian
    Fry, Charles
    Kuech, Thomas
    Pedersen, Joel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [8] Interphase Models for Nanoparticle-Polymer Composites
    Shi, Chunxiang
    Tu, Qingsong
    Fan, Houfu
    Rios, Carlos A. O.
    Li, Shaofan
    JOURNAL OF NANOMECHANICS AND MICROMECHANICS, 2016, 6 (02)
  • [9] Cascade synthesis of nanoparticle-polymer composites
    Firestone, Millicent
    Ringstrand, Bryan
    Williams, Darrick
    Magurudeniya, Harsha
    Joshi, Amita
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [10] Piezoelectric Nanoparticle-Polymer Composite Foams
    McCall, William R.
    Kim, Kanguk
    Heath, Cory
    La Pierre, Gina
    Sirbuly, Donald J.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (22) : 19504 - 19509