Piezoelectric Nanoparticle-Polymer Composite Foams

被引:71
|
作者
McCall, William R. [1 ]
Kim, Kanguk [2 ]
Heath, Cory [1 ]
La Pierre, Gina [1 ]
Sirbuly, Donald J. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
piezoelectric; nanoparticle; foam; composite; BaTiO3; polymer; ENERGY-CONVERSION; PVDF; CERAMICS; OIL; NANOGENERATOR; RUBBER;
D O I
10.1021/am506415y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of similar to 112 pC/N and a power output of similar to 18 mW/cm(3) under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators.
引用
收藏
页码:19504 / 19509
页数:6
相关论文
共 50 条
  • [1] Preparation of nanoparticle-polymer composite with plasma treatment
    Hong, Yong C.
    Lee, Shin W.
    Kwon, O-Pil
    Lee, Suck H.
    Uhm, Han S.
    SURFACE & COATINGS TECHNOLOGY, 2010, 205 : S271 - S274
  • [2] A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle-polymer composite
    Baek, Changyeon
    Yun, Jong Hyuk
    Wang, Ji Eun
    Jeong, Chang Kyu
    Lee, Keon Jae
    Park, Kwi-Il
    Kim, Do Kyung
    NANOSCALE, 2016, 8 (40) : 17632 - 17638
  • [3] Modeling of enhanced penetrant diffusion in nanoparticle-polymer composite membranes
    Xue, Liping
    Borodin, Oleg
    Smith, Grant D.
    JOURNAL OF MEMBRANE SCIENCE, 2006, 286 (1-2) : 293 - 300
  • [4] Nanoparticle-polymer photovoltaic cells
    Saunders, Brian R.
    Turner, Michael L.
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2008, 138 (01) : 1 - 23
  • [5] Highly scalable nanoparticle-polymer composite fiber via wet spinning
    Stone, Roland
    Hipp, Stephen
    Barden, Joel
    Brown, Phillip J.
    Mefford, O. Thompson
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 130 (03) : 1975 - 1980
  • [6] Routes to Nanoparticle-Polymer Superlattices
    Taheri, Sara Mehdizadeh
    Fischer, Steffen
    Foerster, Stephan
    POLYMERS, 2011, 3 (02) : 662 - 673
  • [7] Nanoparticle-polymer composite scaffolds for bone tissue engineering. A review
    Alvarez-Chimal, Rafael
    Arenas-Alatorre, Jesus Angel
    Alvarez-Perez, Marco Antonio
    EUROPEAN POLYMER JOURNAL, 2024, 213
  • [8] On the thermal stability of volume holograms recorded in nanoparticle-polymer composite films
    Tomita, Yasuo
    Nakamura, Toshihiro
    Tago, Atsushi
    PHOTON MANAGEMENT III, 2008, 6994
  • [9] The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds
    Jack, Kevin S.
    Velayudhan, Shiny
    Luckman, Paul
    Trau, Matt
    Grondahl, Lisbeth
    Cooper-White, Justin
    ACTA BIOMATERIALIA, 2009, 5 (07) : 2657 - 2667
  • [10] Erbium doped Nanoparticle-Polymer Composite Thin Films for Integrated Photonics
    Barimah, Eric Kumi
    Rahayu, Sri
    Ziarko, Marcin W.
    Bamiedakis, Nikolaos
    White, Ian H.
    Penty, Richard, V
    Kale, Girish
    Jose, Gin
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,