Conditional Variational Graph Autoencoder for Air Quality Forecasting

被引:0
|
作者
Bonet, Esther Rodrigo [1 ,3 ]
Tien Huu Do [1 ,3 ]
Qin, Xuening [2 ,3 ]
Hofman, Jelle [3 ]
La Manna, Valerio Panzica [3 ]
Philips, Wilfried [2 ,3 ]
Deligiannis, Nikos [1 ,3 ]
机构
[1] Vrije Univ Brussel, ETRO Dept, Pleinlaan 2, B-1050 Brussels, Belgium
[2] Univ Ghent, IPI, Sint Pietersnieuwstr 25, B-9000 Ghent, Belgium
[3] Imec, Kapeldreef 75, B-3001 Leuven, Belgium
基金
比利时弗兰德研究基金会;
关键词
Air quality forecasting; conditional variational graph autoencoders; context-aware graph-based matrix completion; deep learning; PREDICTION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
To control air pollution and mitigate its negative effect on health, it is of the utmost importance to have accurate real-time forecasting models. Existing deep-learning-based air quality forecasting models typically deploy temporal and-less often-spatial modules. Yet, data scarcity emerges as a real issue in this domain, a problem that can be solved by capturing the data distribution. In this work, we address data scarcity by proposing a novel conditional variational graph autoencoder. Our model is able to forecast air pollution by efficiently encoding the spatio-temporal correlations of the known data. Additionally, we leverage dynamic context data such as weather or satellite images to condition the model's behaviour. We formulate the problem as a context-aware graph-based matrix completion task and utilize street-level data from mobile stations. Experiments on real-world air quality datasets show the improved performance of our model with respect to state-of-the-art approaches.
引用
收藏
页码:1442 / 1446
页数:5
相关论文
共 50 条
  • [21] Conditional Temporal Variational AutoEncoder for Action Video Prediction
    Xiaogang Xu
    Yi Wang
    Liwei Wang
    Bei Yu
    Jiaya Jia
    International Journal of Computer Vision, 2023, 131 : 2699 - 2722
  • [22] Asset Pricing via the Conditional Quantile Variational Autoencoder
    Yang, Xuanling
    Zhu, Zhoufan
    Li, Dong
    Zhu, Ke
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 681 - 694
  • [23] Conditional Temporal Variational AutoEncoder for Action Video Prediction
    Xu, Xiaogang
    Wang, Yi
    Wang, Liwei
    Yu, Bei
    Jia, Jiaya
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (10) : 2699 - 2722
  • [24] Emotional Response Generation using Conditional Variational Autoencoder
    Lee, Young-Jun
    Choi, Ho-Jin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 553 - 554
  • [25] Conditional Deep Hierarchical Variational Autoencoder for Voice Conversion
    Akuzawa, Kei
    Onishi, Kotaro
    Takiguchi, Keisuke
    Mametani, Kohki
    Mori, Koichiro
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 808 - 813
  • [26] TGAE: Temporal Graph Autoencoder for Travel Forecasting
    Wang, Qiang
    Jiang, Hao
    Qiu, Meikang
    Liu, Yifeng
    Ye, Dongsheng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8529 - 8541
  • [27] Variational Graph Autoencoder with Mutual Information Maximization for Graph Representations Learning
    Li, Dongjie
    Li, Dong
    Lian, Guang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (09)
  • [28] Adversarial Attention-Based Variational Graph Autoencoder
    Weng, Ziqiang
    Zhang, Weiyu
    Dou, Wei
    IEEE ACCESS, 2020, 8 : 152637 - 152645
  • [29] Network Embedding Algorithm Taking in Variational Graph AutoEncoder
    Chen, Dongming
    Nie, Mingshuo
    Zhang, Hupo
    Wang, Zhen
    Wang, Dongqi
    MATHEMATICS, 2022, 10 (03)
  • [30] A Variational Graph Autoencoder for Manipulation Action Recognition and Prediction
    Akyol, Gamze
    Sariel, Sanem
    Aksoy, Eren Erdal
    2021 20TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2021, : 968 - 973