Gray: a ray tracing-based Monte Carlo simulator for PET

被引:1
|
作者
Freese, David L. [1 ]
Olcott, Peter D. [2 ]
Buss, Samuel R. [3 ]
Levin, Craig S. [1 ,4 ,5 ,6 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] RefleX Med, Hayward, CA USA
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
[4] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2018年 / 63卷 / 10期
关键词
PET; simulation; Monte Carlo; open source; NEMA; POSITRON RANGE; GATE; SCANNER; PERFORMANCE; VALIDATION; SIMSET; MODEL;
D O I
10.1088/1361-6560/aac0cc
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Monte Carlo simulation software plays a critical role in PET system design. Performing complex, repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation can require a large amount of time and a computing cluster to complete. Here we introduce Gray, a Monte Carlo simulation software for PET systems. Gray exploits ray tracing methods used in the computer graphics community to greatly accelerate simulations of PET systems with complex geometries. We demonstrate the implementation of models for positron range, annihilation acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For validation, we simulate the GATE PET benchmark, and compare energy, distribution of hits, coincidences, and run time. We show a 13.6 +/- 0.1 x speedup using Gray, compared to GATE for the same simulation, while demonstrating nearly identical results. We additionally simulate the Siemens Biograph mCT system with both the NEMA NU-2 scatter phantom and sensitivity phantom. We estimate the total sensitivity within 3 +/- 2% when accounting for differences in peak NECR. We also estimate the peak NECR to be 199.5 +/- 0.2 kcps, or within 0.5 +/- 0.1% of published experimental data. The activity concentration of the peak is also estimated within 1.3%.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Arbitrary Voxel Selection for Speeding up a Ray Tracing-based EM Simulator
    Usai, Pierpaolo
    Corucci, Alessandro
    Genovesi, Simone
    Monorchio, Agostino
    [J]. 2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2010,
  • [2] PET SIMULATOR BASED ON MONTE-CARLO METHOD
    PANI, R
    PELLEGRINI, R
    RUBIO, M
    BANCI, M
    SCOPINARO, F
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE, 1992, 19 (08): : 633 - 633
  • [3] Ray tracing-based interactive diffuse indirect illumination
    Byungjoon Chang
    Sanghun Park
    Insung Ihm
    [J]. Multimedia Tools and Applications, 2016, 75 : 7371 - 7390
  • [4] Ray tracing-based interactive diffuse indirect illumination
    Chang, Byungjoon
    Park, Sanghun
    Ihm, Insung
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (12) : 7371 - 7390
  • [5] Edge diffraction in Monte Carlo ray tracing
    Freniere, ER
    Gregory, GG
    Hassler, RA
    [J]. OPTICAL DESIGN AND ANALYSIS SOFTWARE, 1999, 3780 : 151 - 157
  • [6] Irradiance filtering for Monte Carlo ray tracing
    Kontkanen, J
    Räsänen, J
    Keller, A
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2004, 2006, : 259 - +
  • [7] Polarization models for Monte Carlo ray tracing
    Freniere, ER
    Gregory, GG
    Hassler, RA
    [J]. OPTICAL DESIGN AND ANALYSIS SOFTWARE, 1999, 3780 : 148 - 150
  • [8] Experimental validation of a PET Monte-Carlo simulator
    Le Meunier, L
    Mathy, F
    Fagret, D
    [J]. 2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 3343 - 3346
  • [9] Ray Tracing-Based Maritime Channel Analysis for Millimeter Radiowaves
    Mehrnia, Niloofar
    Ozdemir, Mehmet Kemal
    [J]. JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2019, 40 (01) : 108 - 130
  • [10] Ray Tracing-Based Maritime Channel Analysis for Millimeter Radiowaves
    Niloofar Mehrnia
    Mehmet Kemal Ozdemir
    [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40 : 108 - 130