In this paper, we introduce restricted empirical likelihood and restricted penalized empirical likelihood estimators. These estimators are obtained under both unbiasedness and minimum variance criteria for estimating equations. These scopes produce estimators which have appealing properties and particularly are more robust against outliers than some currently existing estimators. Assuming some prior densities, we develop the Bayesian analysis of the restricted empirical likelihood and the restricted penalized empirical likelihood. Moreover, we provide an EM algorithm to approximate hyper-parameters. Finally, we carry out a simulation study and illustrate the theoretical results for a real data set.
机构:
Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
Mengersen, Kerrie L.
Pudlo, Pierre
论文数: 0引用数: 0
h-index: 0
机构:
INRA, Ctr Biol Gest Populat, F-34988 Montferrier Sur Lez, France
Univ Montpellier 2, Inst Math & Modelisat Montpellier, F-34095 Montpellier 5, France
Inst Biol Computat, Montpellier, FranceQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
Pudlo, Pierre
Robert, Christian P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 09, Ctr Rech Math Decis, F-75775 Paris 16, France
Inst Univ France, Paris, France
Ctr Rech Stat & Econ, F-92245 Malakoff, FranceQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
机构:
China Univ Petr, Qingdao 266580, Peoples R China
Shandong Univ, Qilu Secur Inst Financial Studies, Jinan 250100, Peoples R ChinaChina Univ Petr, Qingdao 266580, Peoples R China
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Peoples R China
Tan, Xiaoyan
Yan, Li
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Peoples R China