A Trudinger-Moser inequality in a weighted Sobolev space and applications

被引:29
|
作者
Furtado, Marcelo F. [1 ]
Medeiros, Everaldo S. [2 ]
Severo, Uberlandio B. [2 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Trudinger-Moser inequality; weighted Sobolev space; critical exponential growth; NONHOMOGENEOUS ELLIPTIC PROBLEM; POSITIVE SOLUTIONS; CRITICAL EXPONENT; EQUATIONS; MULTIPLICITY; EXISTENCE; GROWTH;
D O I
10.1002/mana.201200315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a Trudinger-Moser type inequality in a weighted Sobolev space. The inequality is applied in the study of the elliptic equation -div(K(x)del u) = K(x) f (u) + h in R-2, where K(x) = exp(|x|(2)/4), f has exponential critical growth and h belongs to the dual of an appropriate function space. We prove that the problem has at least two weak solutions provided h not equal 0 is small. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1255 / 1273
页数:19
相关论文
共 50 条
  • [1] On a weighted Trudinger-Moser inequality in RN
    Abreu, Emerson
    Fernandes Jr, Leandro G.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 3089 - 3118
  • [2] A Weighted Singular Trudinger-Moser Inequality
    Yu Pengxiu
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2022, 35 (03): : 208 - 222
  • [3] An improvement for the Trudinger-Moser inequality and applications
    do O, Jodo Marcos
    de Souza, Manasses
    de Medeiros, Everaldo
    Severo, Uberlandio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) : 1317 - 1349
  • [4] A Singular Trudinger-Moser Inequality in Hyperbolic Space
    Zhu Xiaobao
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2015, 28 (01): : 39 - 46
  • [5] Trudinger-Moser inequality in the hyperbolic space HN
    Mancini, Gianni
    Sandeep, Kunnath
    Tintarev, Cyril
    ADVANCES IN NONLINEAR ANALYSIS, 2013, 2 (03) : 309 - 324
  • [6] On a Weighted Adachi-Tanaka Type Trudinger-Moser Inequality in Nonradial Sobolev Spaces
    Albuquerque, Francisco
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2021, 40 (02): : 209 - 216
  • [7] A Trudinger-Moser type inequality in a strip and applications
    de Souza, Manasses X.
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [8] TRUDINGER-MOSER EMBEDDINGS ON WEIGHTED SOBOLEV SPACES ON UNBOUNDED DOMAINS
    Do, Joao Marcos
    Lu, Guozhen
    Ponciano, Raoni Cabreal
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (02) : 557 - 584
  • [9] ON A WEIGHTED TRUDINGER-MOSER TYPE INEQUALITY ON THE WHOLE SPACE AND RELATED MAXIMIZING PROBLEM
    Van Hoang Nguyen
    Takahashi, Futoshi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (11-12) : 785 - 806
  • [10] New weighted Trudinger-Moser inequality for functions not necessarily radially symmetric and applications
    Aouaoui, Sami
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (02)