CROP TYPE MAPPING USING MULTI-DATE IMAGERY FROM THE SENTINEL-2 SATELLITES

被引:4
|
作者
Gikov, Alexander [1 ]
Dimitrov, Petar [1 ]
Filchev, Lachezar [1 ]
Roumenina, Eugenia [1 ]
Jelev, Georgi [1 ]
机构
[1] Bulgarian Acad Sci, Inst Space Res & Technol, Acad G Bonchev St,Bl 1, BU-1113 Sofia, Bulgaria
来源
关键词
remote sensing; Sentinel-2; satellite imagery; crop mapping; maximum likelihood classification; TEST-SITE;
D O I
10.7546/CRABS.2019.06.11
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the results of a crop type mapping exercise conducted in two study areas in Bulgaria and based on data from the Sentinel-2 (S2) satellites. A multi-date maximum likelihood classification approach was used in which nine spectral bands from three cloud-free images, well distributed across the growing season, were used. Validation was performed using field data collected as part of the study and data from the Integrated Administration and Control System (IACS) dataset. Depending on the validation dataset and the study area, an overall accuracy of 74-95% was achieved after the crop type maps were post-processed by mode filtering. Further increase in accuracy may be obtained if parcel boundaries, as defined in the IACS dataset, are used to aggregate the per-pixel classification to a parcel level.
引用
收藏
页码:787 / 795
页数:11
相关论文
共 50 条
  • [31] A Novel Spectral Index for Automatic Canola Mapping by Using Sentinel-2 Imagery
    Tian, Haifeng
    Chen, Ting
    Li, Qiangzi
    Mei, Qiuyi
    Wang, Shuai
    Yang, Mengdan
    Wang, Yongjiu
    Qin, Yaochen
    REMOTE SENSING, 2022, 14 (05)
  • [32] Greenhouse Mapping using Object Based Classification and Sentinel-2 Satellite Imagery
    Balcik, Filiz Bektas
    Senel, Gizem
    Goksel, Cigdem
    2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [33] Mapping burned areas in Thailand using Sentinel-2 imagery and OBIA techniques
    Suwanprasit, Chanida
    Shahnawaz
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] DYNAMIC WILDFIRE FUEL MAPPING USING SENTINEL-2 AND PRISMA HYPERSPECTRAL IMAGERY
    Shaik, Riyaaz Uddien
    Giovanni, Laneve
    Fusilli, Lorenzo
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5973 - 5976
  • [35] Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium
    Van Tricht, Kristof
    Gobin, Anne
    Gilliams, Sven
    Piccard, Isabelle
    REMOTE SENSING, 2018, 10 (10)
  • [36] Mapping intertidal macrophytes in fjords in Southwest Greenland using Sentinel-2 imagery
    Carlson, Daniel F.
    Vivo-Pons, Antoni
    Treier, Urs A.
    Matzler, Eva
    Meire, Lorenz
    Sejr, Mikael
    Krause-Jensen, Dorte
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 865
  • [37] Applicability of Multi-date Land Cover Mapping using Landsat-5 TM Imagery in the Northeastern US
    MacLean, Meghan Graham
    Congalton, Russell G.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2013, 79 (04): : 359 - 368
  • [38] Estimating Crop Biophysical Parameters Using Machine Learning Algorithms and Sentinel-2 Imagery
    Kganyago, Mahlatse
    Mhangara, Paidamwoyo
    Adjorlolo, Clement
    REMOTE SENSING, 2021, 13 (21)
  • [39] Enhancement of tree canopy cover for the mapping of forest from the Sentinel-2 imagery
    Mishra, Vikash K.
    Soni, Pramod K.
    Pant, Triloki
    Sharma, Sudhir K.
    Thakur, Vinay
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [40] Mapping Shallow Waters of the Baltic Sea with Sentinel-2 Imagery
    Kutser, T.
    Paavel, B.
    Kaljurand, K.
    Ligi, M.
    Randla, M.
    2018 IEEE/OES BALTIC INTERNATIONAL SYMPOSIUM (BALTIC), 2018,