Electrochemistry of LiMn2O4 nanoparticles made by flame spray pyrolysis

被引:44
|
作者
Patey, T. J. [1 ,2 ]
Buechel, R. [3 ]
Nakayama, M. [2 ]
Novak, P. [1 ]
机构
[1] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland
[2] Tokyo Inst Technol, Dept Appl Chem, Meguro Ku, Tokyo 1528552, Japan
[3] ETH, Particle Technol Lab, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
关键词
MANGANESE OXIDE SPINEL; CATHODE MATERIALS; ENERGY-STORAGE; LITHIUM; INSERTION; PARTICLES;
D O I
10.1039/b821572n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Crystalline LiMn2O4 nanoparticles with specific surface areas between 53.9 and 203.4 m(2) g(-1) (particle size of 25.9-6.9 nm) were produced in a one-step flame spray pyrolysis process by varying the specific combustion enthalpy. An optimized nano-sized powder retained the highest galvanostatic discharge capacity of over 80 mAh g(-1) beyond 60 cycles at 50 C, a suitable positive material for high power Li-ion batteries. Due to the increase in specific surface area, nanoparticles have the advantages of decreased diffusion path lengths and improved charge transfer, however, it is seen in this work that the lack of crystalline bulk present in LiMn2O4 nanoparticles less than 15 nm in size does not justify the advantages of higher specific surface area between the current densities of 0.5-50 C.
引用
收藏
页码:3756 / 3761
页数:6
相关论文
共 50 条
  • [21] Electrochemical investigations on electrostatic spray deposited LiMn2O4 films
    Shu, D
    Chung, KY
    Cho, WI
    Kim, KB
    JOURNAL OF POWER SOURCES, 2003, 114 (02) : 253 - 263
  • [22] Synthesis of LiMn2O4 Nanoparticles Using Nano-Sized MnO2 Precursor and Their Electrochemistry Performance
    Jiang, Jianbing
    Liu, Qilong
    Xu, Lijian
    Xu, Jianxiong
    Du, Jingjing
    He, Xinkuai
    Li, Ding
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (12) : 12640 - 12643
  • [23] LiMn2O4–Norit at a Low Temperature in Comparison with LiMn2O4—MWCNT and LiMn2O4–EUZ–М Graphite in the Prototype Li-Battery
    R. D. Apostolova
    E. M. Shembel
    Surface Engineering and Applied Electrochemistry, 2020, 56 : 533 - 540
  • [24] Syntheses of spherical LiMn2O4 with Mn3O4 and its electrochemistry performance
    Jiang, Jianbing
    Du, Ke
    Cao, Yanbing
    Peng, Zhongdong
    Hu, Guorong
    Duan, Jianguo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 577 : 138 - 142
  • [25] Superior electrochemical properties of LiMn2O4 yolk-shell powders prepared by a simple spray pyrolysis process
    Sim, Chul Min
    Choi, Seung Ho
    Kang, Yun Chan
    CHEMICAL COMMUNICATIONS, 2013, 49 (53) : 5978 - 5980
  • [26] Particle morphology and electrochemical performances of spinel LiMn2O4 powders synthesized using ultrasonic spray pyrolysis method
    Taniguchi, I
    Lim, CK
    Song, D
    Wakihara, M
    SOLID STATE IONICS, 2002, 146 (3-4) : 239 - 247
  • [27] Spray-drying process for synthesis of nanosized LiMn2O4 cathode
    Wu, H. M.
    Tu, J. P.
    Yang, Y. Z.
    Shi, D. Q.
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (13) : 4247 - 4250
  • [28] Spray-drying process for synthesis of nanosized LiMn2O4 cathode
    H. M. Wu
    J. P. Tu
    Y. Z. Yang
    D. Q. Shi
    Journal of Materials Science, 2006, 41 : 4247 - 4250
  • [29] Electrochemistry of LiMn2O4 epitaxial films deposited on various single crystal substrates
    Sonoyama, Noriyuki
    Iwase, Kosuke
    Takatsuka, Hironori
    Matsumura, Tadaaki
    Imanishi, Nobuyuki
    Takeda, Yasuo
    Kanno, Ryoji
    JOURNAL OF POWER SOURCES, 2009, 189 (01) : 561 - 565
  • [30] Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources
    Bao, Shu-Juan
    Li, Chang-Ming
    Li, Hu-Lin
    Luong, John H. T.
    JOURNAL OF POWER SOURCES, 2007, 164 (02) : 885 - 889