Age Estimation Using Effective Brain Local Features from T1-Weighted Images

被引:0
|
作者
Fujimoto, Ryuichi [1 ]
Kondo, Chihiro [1 ]
Ito, Koichi [1 ]
Wu, Kai [2 ]
Sato, Kazunori [3 ]
Taki, Yasuyuki [3 ]
Fukuda, Hiroshi [4 ]
Aoki, Takafumi [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Scienves, Sendai, Miyagi, Japan
[2] South China Univ Technol, Guangzhou, Guangdong, Peoples R China
[3] Tohoku Univ, Inst Dev Aging & Canc, Sendai, Miyagi, Japan
[4] Tohoku Pharmaceut Univ, Sendai, Miyagi, Japan
关键词
PARCELLATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper proposes a simple method of selecting effective brain local features for age estimation from T1-weighted MR images. We also employ the high-resolution AAL atlas, which is defined by 1,024 local regions, to improve the accuracy of age estimation. We evaluate performance of the proposed method using 1,099 T1-weighted images from a large-scale brain MR image database of healthy Japanese, and demonstrate that the proposed method exhibits efficient performance of age estimation compared with conventional methods.
引用
收藏
页码:5941 / 5944
页数:4
相关论文
共 50 条
  • [21] Automatic segmentation of white matter lesions in T1-weighted brain MR images
    Yu, SY
    Pham, DL
    Shen, D
    Herskovits, EH
    Resnick, SM
    Davatzikos, C
    2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 253 - 256
  • [22] Visualizing human brain surface from T1-weighted MR images using texture-mapped triangle meshes
    Seppä, M
    Hämäläinen, M
    NEUROIMAGE, 2005, 26 (01) : 1 - 12
  • [23] Thermal effect analysis of brain tumor on simulated T1-weighted MRI images
    Bousselham, Abdelmajid
    Bouattane, Omar
    Youssfi, Mohamed
    Raifiani, Abdelhadi
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV2018), 2018,
  • [24] Elucidating the aberrant brain regions in bipolar disorder using T1-weighted/T2-weighted magnetic resonance ratio images
    Ishida, Takuya
    Donishi, Tomohiro
    Iwatani, Jun
    Yamada, Shinichi
    Takahashi, Shun
    Ukai, Satoshi
    Shinosaki, Kazuhiro
    Terada, Masaki
    Kaneoke, Yoshiki
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2017, 263 : 76 - 84
  • [25] Infant Brain Extraction in T1-Weighted MR Images Using BET and Refinement Using LCDG and MGRF Models
    Alansary, Amir
    Ismail, Marwa
    Soliman, Ahmed
    Khalifa, Fahmi
    Nitzken, Matthew
    Elnakib, Ahmed
    Mostapha, Mahmoud
    Black, Austin
    Stinebruner, Katie
    Casanova, Manuel F.
    Zurada, Jacek M.
    El-Baz, Ayman
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2016, 20 (03) : 925 - 935
  • [26] Validation of brain segmentation and tissue classification algorithm for T1-weighted MR images
    Chalana, V
    Ng, L
    Rystrom, L
    Gee, J
    Haynor, D
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 1873 - 1882
  • [27] Validation of tissue modelization and classification techniques in T1-weighted MR brain images
    Cuadra, MB
    Platel, B
    Solanas, E
    Butz, T
    Thiran, JP
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION-MICCAI 2002, PT 1, 2002, 2488 : 290 - 297
  • [28] T1-weighted MRI-driven Brain Age Estimation in Alzheimer's Disease and Parkinson's Disease
    Beheshti, Iman
    Mishra, Shiwangi
    Sone, Daichi
    Khanna, Pritee
    Matsuda, Hiroshi
    AGING AND DISEASE, 2020, 11 (03): : 618 - 628
  • [29] Evaluation Of Several Similarity Measures For Deformable Image Registration Using T1-Weighted MR Images Of The Brain
    Boukellouz, Wafa
    Moussaoui, Abdelouahab
    2017 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING - BOUMERDES (ICEE-B), 2017,
  • [30] Prediction of High-Grade Pediatric Meningiomas: Magnetic Resonance Imaging Features Based on T1-Weighted, T2-Weighted, and Contrast-Enhanced T1-Weighted Images
    Li, Hao
    Zhao, Meng
    Jiao, Yuming
    Ge, Peicong
    Li, Zhicen
    Ma, Ji
    Wang, Shuo
    Cao, Yong
    Zhao, Jizong
    WORLD NEUROSURGERY, 2016, 91 : 89 - 95