Multisensor fusion for target tracking using sequential Monte Carlo methods

被引:0
|
作者
Vemula, Mahesh [1 ]
Djuric, Petar M. [1 ]
机构
[1] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
来源
2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2 | 2005年
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider the problems of centralized and distributed multisensor filtering from a Bayesian perspective. We present sequential Monte Carlo algorithms for obtaining complete posterior distributions from individual sensor measurements and from individual sensor posterior distributions, respectively. In the latter case, the individual posterior distributions are approximated as Gaussian distributions, where the information being communicated by the sensors are the statistics of the distributions. The posterior distributions obtained by a centralized algorithm are computed either by the fusing of the likelihoods or by combining the moments of the individual sensor posterior distributions. The proposed algorithms are applied to two problems of target tracking (a) using bearings only measurements and (b) using multimodal sensor data. For the problems, we provide the root mean square errors, and for problem (a), we compare them with the posterior Cramer-Rao lower bounds.
引用
收藏
页码:1223 / 1227
页数:5
相关论文
共 50 条
  • [21] Multiellipsoidal extended target tracking with known extent using sequential Monte Carlo framework
    Kara, Suleyman Fatih
    Ozkan, Emre
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2019, 27 (02) : 1546 - 1558
  • [22] Collaborative data fusion tracking in sensor networks using Monte Carlo methods
    Wong, YF
    Wu, JK
    Ngoh, LH
    Wong, WC
    LCN 2004: 29TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON LOCAL COMPUTER NETWORKS, PROCEEDINGS, 2004, : 563 - 564
  • [23] Distributed tracking with sequential Monte Carlo methods for manoeuvrable sensors
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 113 - 116
  • [24] APPLICATION OF SEQUENTIAL MONTE CARLO METHODS FOR SPACE OBJECT TRACKING
    Hussein, Islam I.
    Zaidi, Waqar
    Faber, Weston
    Roscoe, Christopher W. T.
    Wilkins, Matthew P.
    Schumacher, Paul W., Jr.
    Bolden, Mark
    SPACEFLIGHT MECHANICS 2017, PTS I - IV, 2017, 160 : 1313 - 1328
  • [25] Sequential Monte Carlo methods for contour tracking of contaminant clouds
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    SIGNAL PROCESSING, 2010, 90 (01) : 249 - 260
  • [26] Contour tracking of contaminant clouds with sequential Monte Carlo methods
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1469 - 1472
  • [27] Sparse index tracking using sequential Monte Carlo
    Satpathy, Tanmay
    Shah, Rushabh
    QUANTITATIVE FINANCE, 2022, 22 (09) : 1579 - 1592
  • [28] Sequential Monte Carlo implementation for infrared/radar maneuvering target tracking
    Zhang, Gaoyu
    Liang, Jimin
    Zhao, Heng
    Yang, Wanhai
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 5066 - +
  • [29] Evolutionary Optimization of Dynamics Models in Sequential Monte Carlo Target Tracking
    Johansson, Anders M.
    Lehmann, Eric A.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (04) : 879 - 894
  • [30] Multisensor-based human tracking behaviors with Markov chain Monte Carlo methods
    Miyashita, T
    Shiomi, M
    Shiguro, H
    2004 4TH IEEE/RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 794 - 810