Numerical resolution of cone-constrained eigenvalue problems

被引:0
|
作者
Da Costa, A. Pinto [1 ,2 ]
Seeger, Alberto [3 ]
机构
[1] Univ Tecn Lisbon, Inst Super Tecn, Dept Engn Civil & Arquitectura, P-1049001 Lisbon, Portugal
[2] ICIST, P-1049001 Lisbon, Portugal
[3] Univ Avignon, Dept Math, F-84000 Avignon, France
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2009年 / 28卷 / 01期
关键词
complementarity condition; generalized eigenvalue problem; power iteration method; scaling and projection algorithm; COMPLEMENTARITY-PROBLEM; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a convex cone K and matrices A and B, one wishes to find a scalar lambda and a nonzero vector x satisfying the complementarity system K (sic) x perpendicular to (Ax - lambda Bx) is an element of K+. This problem arises in mechanics and in other areas of applied mathematics. Two numerical techniques for solving such kind of cone-constrained eigenvalue problem are discussed, namely, the Power Iteration Method and the Scaling and Projection Algorithm.
引用
收藏
页码:37 / 61
页数:25
相关论文
共 50 条
  • [41] Penalized Versus Constrained Generalized Eigenvalue Problems
    Gaynanova, Irina
    Booth, James G.
    Wells, Martin T.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 379 - 387
  • [42] A NUMERICAL TECHNIQUE FOR MULTIPARAMETER EIGENVALUE PROBLEMS
    BROWNE, PJ
    SLEEMAN, BD
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1982, 2 (04) : 451 - 457
  • [43] NUMERICAL-SOLUTION OF EIGENVALUE PROBLEMS
    SCHWARZ, HR
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T504 - T512
  • [44] Numerical Analysis of Nonlinear Eigenvalue Problems
    Eric Cancès
    Rachida Chakir
    Yvon Maday
    Journal of Scientific Computing, 2010, 45 : 90 - 117
  • [45] Numerical solution of linear eigenvalue problems
    Bosch, Jessica
    Greif, Chen
    GEOMETRIC AND COMPUTATIONAL SPECTRAL THEORY, 2017, 700 : 117 - 153
  • [46] Numerical methods for eigenvalue and control problems
    Mehrmann, V
    FRONTIERS IN NUMERICAL ANALYSIS, 2003, : 303 - 349
  • [47] Numerical Analysis of Nonlinear Eigenvalue Problems
    Cances, Eric
    Chakir, Rachida
    Maday, Yvon
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) : 90 - 117
  • [49] Short Communication: Cone-Constrained Monotone Mean-Variance Portfolio Selection under Diffusion Models
    Shen, Yang
    Zou, Bin
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2022, 13 (04): : SC99 - SC112
  • [50] ON MINIMAX EIGENVALUE PROBLEMS VIA CONSTRAINED OPTIMIZATION.
    Goh, C.J.
    Teo, K.L.
    Journal of Optimization Theory and Applications, 1988, 57 (01): : 59 - 68